Proven Expertise
Our team brings years of experience in the digital payments industry to provide reliable services.
<?php
/**
* BCMath BigInteger Engine
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Math\BigInteger\Engines;
use phpseclib3\Common\Functions\Strings;
use phpseclib3\Exception\BadConfigurationException;
/**
* BCMath Engine.
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class BCMath extends Engine
{
/**
* Can Bitwise operations be done fast?
*
* @see parent::bitwise_leftRotate()
* @see parent::bitwise_rightRotate()
*/
const FAST_BITWISE = false;
/**
* Engine Directory
*
* @see parent::setModExpEngine
*/
const ENGINE_DIR = 'BCMath';
/**
* Test for engine validity
*
* @return bool
* @see parent::__construct()
*/
public static function isValidEngine()
{
return extension_loaded('bcmath');
}
/**
* Default constructor
*
* @param mixed $x integer Base-10 number or base-$base number if $base set.
* @param int $base
* @see parent::__construct()
*/
public function __construct($x = 0, $base = 10)
{
if (!isset(static::$isValidEngine[static::class])) {
static::$isValidEngine[static::class] = self::isValidEngine();
}
if (!static::$isValidEngine[static::class]) {
throw new BadConfigurationException('BCMath is not setup correctly on this system');
}
$this->value = '0';
parent::__construct($x, $base);
}
/**
* Initialize a BCMath BigInteger Engine instance
*
* @param int $base
* @see parent::__construct()
*/
protected function initialize($base)
{
switch (abs($base)) {
case 256:
// round $len to the nearest 4
$len = (strlen($this->value) + 3) & ~3;
$x = str_pad($this->value, $len, chr(0), STR_PAD_LEFT);
$this->value = '0';
for ($i = 0; $i < $len; $i += 4) {
$this->value = bcmul($this->value, '4294967296', 0); // 4294967296 == 2**32
$this->value = bcadd(
$this->value,
0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord(
$x[$i + 2]
) << 8) | ord($x[$i + 3])),
0
);
}
if ($this->is_negative) {
$this->value = '-' . $this->value;
}
break;
case 16:
$x = (strlen($this->value) & 1) ? '0' . $this->value : $this->value;
$temp = new self(Strings::hex2bin($x), 256);
$this->value = $this->is_negative ? '-' . $temp->value : $temp->value;
$this->is_negative = false;
break;
case 10:
// explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different
// results then doing it on '-1' does (modInverse does $x[0])
$this->value = $this->value === '-' ? '0' : (string)$this->value;
}
}
/**
* Converts a BigInteger to a base-10 number.
*
* @return string
*/
public function toString()
{
if ($this->value === '0') {
return '0';
}
return ltrim($this->value, '0');
}
/**
* Converts a BigInteger to a byte string (eg. base-256).
*
* @param bool $twos_compliment
* @return string
*/
public function toBytes($twos_compliment = false)
{
if ($twos_compliment) {
return $this->toBytesHelper();
}
$value = '';
$current = $this->value;
if ($current[0] == '-') {
$current = substr($current, 1);
}
while (bccomp($current, '0', 0) > 0) {
$temp = bcmod($current, '16777216');
$value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value;
$current = bcdiv($current, '16777216', 0);
}
return $this->precision > 0 ?
substr(str_pad($value, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
ltrim($value, chr(0));
}
/**
* Adds two BigIntegers.
*
* @param BCMath $y
* @return BCMath
*/
public function add(BCMath $y)
{
$temp = new self();
$temp->value = bcadd($this->value, $y->value);
return $this->normalize($temp);
}
/**
* Subtracts two BigIntegers.
*
* @param BCMath $y
* @return BCMath
*/
public function subtract(BCMath $y)
{
$temp = new self();
$temp->value = bcsub($this->value, $y->value);
return $this->normalize($temp);
}
/**
* Multiplies two BigIntegers.
*
* @param BCMath $x
* @return BCMath
*/
public function multiply(BCMath $x)
{
$temp = new self();
$temp->value = bcmul($this->value, $x->value);
return $this->normalize($temp);
}
/**
* Divides two BigIntegers.
*
* Returns an array whose first element contains the quotient and whose second element contains the
* "common residue". If the remainder would be positive, the "common residue" and the remainder are the
* same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder
* and the divisor (basically, the "common residue" is the first positive modulo).
*
* @param BCMath $y
* @return array{static, static}
*/
public function divide(BCMath $y)
{
$quotient = new self();
$remainder = new self();
$quotient->value = bcdiv($this->value, $y->value, 0);
$remainder->value = bcmod($this->value, $y->value);
if ($remainder->value[0] == '-') {
$remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value, 0);
}
return [$this->normalize($quotient), $this->normalize($remainder)];
}
/**
* Calculates modular inverses.
*
* Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses.
*
* @param BCMath $n
* @return false|BCMath
*/
public function modInverse(BCMath $n)
{
return $this->modInverseHelper($n);
}
/**
* Calculates the greatest common divisor and Bezout's identity.
*
* Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that
* 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which
* combination is returned is dependent upon which mode is in use. See
* {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information.
*
* @param BCMath $n
* @return array{gcd: static, x: static, y: static}
*/
public function extendedGCD(BCMath $n)
{
// it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works
// best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is,
// the basic extended euclidean algorithim is what we're using.
$u = $this->value;
$v = $n->value;
$a = '1';
$b = '0';
$c = '0';
$d = '1';
while (bccomp($v, '0', 0) != 0) {
$q = bcdiv($u, $v, 0);
$temp = $u;
$u = $v;
$v = bcsub($temp, bcmul($v, $q, 0), 0);
$temp = $a;
$a = $c;
$c = bcsub($temp, bcmul($a, $q, 0), 0);
$temp = $b;
$b = $d;
$d = bcsub($temp, bcmul($b, $q, 0), 0);
}
return [
'gcd' => $this->normalize(new static($u)),
'x' => $this->normalize(new static($a)),
'y' => $this->normalize(new static($b))
];
}
/**
* Calculates the greatest common divisor
*
* Say you have 693 and 609. The GCD is 21.
*
* @param BCMath $n
* @return BCMath
*/
public function gcd(BCMath $n)
{
extract($this->extendedGCD($n));
/** @var BCMath $gcd */
return $gcd;
}
/**
* Absolute value.
*
* @return BCMath
*/
public function abs()
{
$temp = new static();
$temp->value = strlen($this->value) && $this->value[0] == '-' ?
substr($this->value, 1) :
$this->value;
return $temp;
}
/**
* Logical And
*
* @param BCMath $x
* @return BCMath
*/
public function bitwise_and(BCMath $x)
{
return $this->bitwiseAndHelper($x);
}
/**
* Logical Or
*
* @param BCMath $x
* @return BCMath
*/
public function bitwise_or(BCMath $x)
{
return $this->bitwiseXorHelper($x);
}
/**
* Logical Exclusive Or
*
* @param BCMath $x
* @return BCMath
*/
public function bitwise_xor(BCMath $x)
{
return $this->bitwiseXorHelper($x);
}
/**
* Logical Right Shift
*
* Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
*
* @param int $shift
* @return BCMath
*/
public function bitwise_rightShift($shift)
{
$temp = new static();
$temp->value = bcdiv($this->value, bcpow('2', $shift, 0), 0);
return $this->normalize($temp);
}
/**
* Logical Left Shift
*
* Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
*
* @param int $shift
* @return BCMath
*/
public function bitwise_leftShift($shift)
{
$temp = new static();
$temp->value = bcmul($this->value, bcpow('2', $shift, 0), 0);
return $this->normalize($temp);
}
/**
* Compares two numbers.
*
* Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this
* is demonstrated thusly:
*
* $x > $y: $x->compare($y) > 0
* $x < $y: $x->compare($y) < 0
* $x == $y: $x->compare($y) == 0
*
* Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y).
*
* {@internal Could return $this->subtract($x), but that's not as fast as what we do do.}
*
* @param BCMath $y
* @return int in case < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal.
* @see self::equals()
*/
public function compare(BCMath $y)
{
return bccomp($this->value, $y->value, 0);
}
/**
* Tests the equality of two numbers.
*
* If you need to see if one number is greater than or less than another number, use BigInteger::compare()
*
* @param BCMath $x
* @return bool
*/
public function equals(BCMath $x)
{
return $this->value == $x->value;
}
/**
* Performs modular exponentiation.
*
* @param BCMath $e
* @param BCMath $n
* @return BCMath
*/
public function modPow(BCMath $e, BCMath $n)
{
return $this->powModOuter($e, $n);
}
/**
* Performs modular exponentiation.
*
* Alias for modPow().
*
* @param BCMath $e
* @param BCMath $n
* @return BCMath
*/
public function powMod(BCMath $e, BCMath $n)
{
return $this->powModOuter($e, $n);
}
/**
* Performs modular exponentiation.
*
* @param BCMath $e
* @param BCMath $n
* @return BCMath
*/
protected function powModInner(BCMath $e, BCMath $n)
{
try {
$class = static::$modexpEngine[static::class];
return $class::powModHelper($this, $e, $n, static::class);
} catch (\Exception $err) {
return BCMath\DefaultEngine::powModHelper($this, $e, $n, static::class);
}
}
/**
* Normalize
*
* Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
*
* @param BCMath $result
* @return BCMath
*/
protected function normalize(BCMath $result)
{
$result->precision = $this->precision;
$result->bitmask = $this->bitmask;
if ($result->bitmask !== false) {
$result->value = bcmod($result->value, $result->bitmask->value);
}
return $result;
}
/**
* Generate a random prime number between a range
*
* If there's not a prime within the given range, false will be returned.
*
* @param BCMath $min
* @param BCMath $max
* @return false|BCMath
*/
public static function randomRangePrime(BCMath $min, BCMath $max)
{
return self::randomRangePrimeOuter($min, $max);
}
/**
* Generate a random number between a range
*
* Returns a random number between $min and $max where $min and $max
* can be defined using one of the two methods:
*
* BigInteger::randomRange($min, $max)
* BigInteger::randomRange($max, $min)
*
* @param BCMath $min
* @param BCMath $max
* @return BCMath
*/
public static function randomRange(BCMath $min, BCMath $max)
{
return self::randomRangeHelper($min, $max);
}
/**
* Make the current number odd
*
* If the current number is odd it'll be unchanged. If it's even, one will be added to it.
*
* @see self::randomPrime()
*/
protected function make_odd()
{
if (!$this->isOdd()) {
$this->value = bcadd($this->value, '1');
}
}
/**
* Test the number against small primes.
*
* @see self::isPrime()
*/
protected function testSmallPrimes()
{
if ($this->value === '1') {
return false;
}
if ($this->value === '2') {
return true;
}
if ($this->value[strlen($this->value) - 1] % 2 == 0) {
return false;
}
$value = $this->value;
foreach (self::PRIMES as $prime) {
$r = bcmod($this->value, $prime);
if ($r == '0') {
return $this->value == $prime;
}
}
return true;
}
/**
* Scan for 1 and right shift by that amount
*
* ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s));
*
* @param BCMath $r
* @return int
* @see self::isPrime()
*/
public static function scan1divide(BCMath $r)
{
$r_value = &$r->value;
$s = 0;
// if $n was 1, $r would be 0 and this would be an infinite loop, hence our $this->equals(static::$one[static::class]) check earlier
while ($r_value[strlen($r_value) - 1] % 2 == 0) {
$r_value = bcdiv($r_value, '2', 0);
++$s;
}
return $s;
}
/**
* Performs exponentiation.
*
* @param BCMath $n
* @return BCMath
*/
public function pow(BCMath $n)
{
$temp = new self();
$temp->value = bcpow($this->value, $n->value);
return $this->normalize($temp);
}
/**
* Return the minimum BigInteger between an arbitrary number of BigIntegers.
*
* @param BCMath ...$nums
* @return BCMath
*/
public static function min(BCMath ...$nums)
{
return self::minHelper($nums);
}
/**
* Return the maximum BigInteger between an arbitrary number of BigIntegers.
*
* @param BCMath ...$nums
* @return BCMath
*/
public static function max(BCMath ...$nums)
{
return self::maxHelper($nums);
}
/**
* Tests BigInteger to see if it is between two integers, inclusive
*
* @param BCMath $min
* @param BCMath $max
* @return bool
*/
public function between(BCMath $min, BCMath $max)
{
return $this->compare($min) >= 0 && $this->compare($max) <= 0;
}
/**
* Set Bitmask
*
* @param int $bits
* @return Engine
* @see self::setPrecision()
*/
protected static function setBitmask($bits)
{
$temp = parent::setBitmask($bits);
return $temp->add(static::$one[static::class]);
}
/**
* Is Odd?
*
* @return bool
*/
public function isOdd()
{
return $this->value[strlen($this->value) - 1] % 2 == 1;
}
/**
* Tests if a bit is set
*
* @return bool
*/
public function testBit($x)
{
return bccomp(
bcmod($this->value, bcpow('2', $x + 1, 0)),
bcpow('2', $x, 0),
0
) >= 0;
}
/**
* Is Negative?
*
* @return bool
*/
public function isNegative()
{
return strlen($this->value) && $this->value[0] == '-';
}
/**
* Negate
*
* Given $k, returns -$k
*
* @return BCMath
*/
public function negate()
{
$temp = clone $this;
if (!strlen($temp->value)) {
return $temp;
}
$temp->value = $temp->value[0] == '-' ?
substr($this->value, 1) :
'-' . $this->value;
return $temp;
}
}
How it Works
Getting started with NFC Pay is simple and quick. Register your account, add your cards, and you're ready to make payments in no time. Whether you're paying at a store, sending money to a friend, or managing your merchant transactions, NFC Pay makes it easy and secure.
Download the NFC Pay app and sign up with your email or phone number. Complete the registration process by verifying your identity, and set up your secure PIN to protect your account.
Link your debit or credit cards to your NFC Pay wallet. Simply scan your card or enter the details manually, and you’re set to load funds, shop, and pay with ease.
To pay, simply tap your phone or scan the QR code at checkout. You can also transfer money to other users with a few taps. Enjoy fast, contactless payments with top-notch security.
Security System
NFC Pay prioritizes your security with advanced features that safeguard every transaction. From SMS or email verification to end-to-end encryption, we've implemented robust measures to ensure your data is always protected. Our security systems are designed to prevent unauthorized access and provide you with a safe and reliable payment experience.
Receive instant alerts for every transaction to keep track of your account activities.
Verify your identity through our Know Your Customer process to prevent fraud and enhance security.
Dramatically supply transparent backward deliverables before caward comp internal or "organic" sources.
All your data and transactions are encrypted, ensuring that your sensitive information remains private.
Monitor unusual activity patterns to detect and prevent suspicious behavior in real-time.
Why Choice Us
With NFC Pay, you get a trusted platform backed by proven expertise and a commitment to quality. We put our customers first, offering innovative solutions tailored to your needs, ensuring every transaction is secure, swift, and seamless.
Our team brings years of experience in the digital payments industry to provide reliable services.
We prioritize excellence, ensuring that every aspect of our platform meets the highest standards.
Your needs drive our solutions, and we are dedicated to delivering a superior user experience.
We continuously evolve, integrating the latest technologies to enhance your payment experience.
Testimonial Section
Hear from our users who trust NFC Pay for their everyday transactions. Our commitment to security, ease of use, and exceptional service shines through in their experiences. See why our clients choose NFC Pay for their payment needs and how it has transformed the way they manage their finances.
App Section
Unlock the full potential of NFC Pay by downloading our app, designed to bring secure, swift, and smart transactions to your fingertips. Whether you're paying at a store, transferring money to friends, or managing your business payments, the NFC Pay app makes it effortless. Available on both iOS and Android, it's your all-in-one solution for convenient and reliable digital payments. Download now and experience the future of payments!