<?php
/**
* Curves over y^2 = x^3 + a*x + x
*
* Technically, a Montgomery curve has a coefficient for y^2 but for Curve25519 and Curve448 that
* coefficient is 1.
*
* Curve25519 and Curve448 do not make use of the y coordinate, which makes it unsuitable for use
* with ECDSA / EdDSA. A few other differences between Curve25519 and Ed25519 are discussed at
* https://crypto.stackexchange.com/a/43058/4520
*
* More info:
*
* https://en.wikipedia.org/wiki/Montgomery_curve
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2019 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Crypt\EC\BaseCurves;
use phpseclib3\Crypt\EC\Curves\Curve25519;
use phpseclib3\Math\BigInteger;
use phpseclib3\Math\PrimeField;
use phpseclib3\Math\PrimeField\Integer as PrimeInteger;
/**
* Curves over y^2 = x^3 + a*x + x
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class Montgomery extends Base
{
/**
* Prime Field Integer factory
*
* @var \phpseclib3\Math\PrimeField
*/
protected $factory;
/**
* Cofficient for x
*
* @var object
*/
protected $a;
/**
* Constant used for point doubling
*
* @var object
*/
protected $a24;
/**
* The Number Zero
*
* @var object
*/
protected $zero;
/**
* The Number One
*
* @var object
*/
protected $one;
/**
* Base Point
*
* @var object
*/
protected $p;
/**
* The modulo
*
* @var BigInteger
*/
protected $modulo;
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Sets the modulo
*/
public function setModulo(BigInteger $modulo)
{
$this->modulo = $modulo;
$this->factory = new PrimeField($modulo);
$this->zero = $this->factory->newInteger(new BigInteger());
$this->one = $this->factory->newInteger(new BigInteger(1));
}
/**
* Set coefficients a
*/
public function setCoefficients(BigInteger $a)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->a = $this->factory->newInteger($a);
$two = $this->factory->newInteger(new BigInteger(2));
$four = $this->factory->newInteger(new BigInteger(4));
$this->a24 = $this->a->subtract($two)->divide($four);
}
/**
* Set x and y coordinates for the base point
*
* @param BigInteger|PrimeInteger $x
* @param BigInteger|PrimeInteger $y
* @return PrimeInteger[]
*/
public function setBasePoint($x, $y)
{
switch (true) {
case !$x instanceof BigInteger && !$x instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 1 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
case !$y instanceof BigInteger && !$y instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 2 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
}
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->p = [
$x instanceof BigInteger ? $this->factory->newInteger($x) : $x,
$y instanceof BigInteger ? $this->factory->newInteger($y) : $y
];
}
/**
* Retrieve the base point as an array
*
* @return array
*/
public function getBasePoint()
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
/*
if (!isset($this->p)) {
throw new \RuntimeException('setBasePoint needs to be called before this method');
}
*/
return $this->p;
}
/**
* Doubles and adds a point on a curve
*
* See https://tools.ietf.org/html/draft-ietf-tls-curve25519-01#appendix-A.1.3
*
* @return FiniteField[][]
*/
private function doubleAndAddPoint(array $p, array $q, PrimeInteger $x1)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
return [];
}
if (!isset($p[1])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to XZ coordinates');
}
list($x2, $z2) = $p;
list($x3, $z3) = $q;
$a = $x2->add($z2);
$aa = $a->multiply($a);
$b = $x2->subtract($z2);
$bb = $b->multiply($b);
$e = $aa->subtract($bb);
$c = $x3->add($z3);
$d = $x3->subtract($z3);
$da = $d->multiply($a);
$cb = $c->multiply($b);
$temp = $da->add($cb);
$x5 = $temp->multiply($temp);
$temp = $da->subtract($cb);
$z5 = $x1->multiply($temp->multiply($temp));
$x4 = $aa->multiply($bb);
$temp = static::class == Curve25519::class ? $bb : $aa;
$z4 = $e->multiply($temp->add($this->a24->multiply($e)));
return [
[$x4, $z4],
[$x5, $z5]
];
}
/**
* Multiply a point on the curve by a scalar
*
* Uses the montgomery ladder technique as described here:
*
* https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
* https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772
*
* @return array
*/
public function multiplyPoint(array $p, BigInteger $d)
{
$p1 = [$this->one, $this->zero];
$alreadyInternal = isset($x[1]);
$p2 = $this->convertToInternal($p);
$x = $p[0];
$b = $d->toBits();
$b = str_pad($b, 256, '0', STR_PAD_LEFT);
for ($i = 0; $i < strlen($b); $i++) {
$b_i = (int) $b[$i];
if ($b_i) {
list($p2, $p1) = $this->doubleAndAddPoint($p2, $p1, $x);
} else {
list($p1, $p2) = $this->doubleAndAddPoint($p1, $p2, $x);
}
}
return $alreadyInternal ? $p1 : $this->convertToAffine($p1);
}
/**
* Converts an affine point to an XZ coordinate
*
* From https://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html
*
* XZ coordinates represent x y as X Z satsfying the following equations:
*
* x=X/Z
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (empty($p)) {
return [clone $this->zero, clone $this->one];
}
if (isset($p[1])) {
return $p;
}
$p[1] = clone $this->one;
return $p;
}
/**
* Returns the affine point
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToAffine(array $p)
{
if (!isset($p[1])) {
return $p;
}
list($x, $z) = $p;
return [$x->divide($z)];
}
}
How To Payment
Making a payment on our website is quick and secure. Start by logging in or creating an account. Select your preferred payment method, input the required details, and review the information. Once you confirm everything is correct, click on the "Submit Payment" button. You’ll receive instant confirmation and can track your payment status through your account dashboard. It’s an easy and secure process.