<?php
/**
* Curve methods common to all curves
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Crypt\EC\BaseCurves;
use phpseclib3\Math\BigInteger;
/**
* Base
*
* @author Jim Wigginton <terrafrost@php.net>
*/
abstract class Base
{
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Finite Field Integer factory
*
* @var \phpseclib3\Math\FiniteField\Integer
*/
protected $factory;
/**
* Returns a random integer
*
* @return object
*/
public function randomInteger()
{
return $this->factory->randomInteger();
}
/**
* Converts a BigInteger to a \phpseclib3\Math\FiniteField\Integer integer
*
* @return object
*/
public function convertInteger(BigInteger $x)
{
return $this->factory->newInteger($x);
}
/**
* Returns the length, in bytes, of the modulo
*
* @return integer
*/
public function getLengthInBytes()
{
return $this->factory->getLengthInBytes();
}
/**
* Returns the length, in bits, of the modulo
*
* @return integer
*/
public function getLength()
{
return $this->factory->getLength();
}
/**
* Multiply a point on the curve by a scalar
*
* Uses the montgomery ladder technique as described here:
*
* https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
* https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772
*
* @return array
*/
public function multiplyPoint(array $p, BigInteger $d)
{
$alreadyInternal = isset($p[2]);
$r = $alreadyInternal ?
[[], $p] :
[[], $this->convertToInternal($p)];
$d = $d->toBits();
for ($i = 0; $i < strlen($d); $i++) {
$d_i = (int) $d[$i];
$r[1 - $d_i] = $this->addPoint($r[0], $r[1]);
$r[$d_i] = $this->doublePoint($r[$d_i]);
}
return $alreadyInternal ? $r[0] : $this->convertToAffine($r[0]);
}
/**
* Creates a random scalar multiplier
*
* @return BigInteger
*/
public function createRandomMultiplier()
{
static $one;
if (!isset($one)) {
$one = new BigInteger(1);
}
return BigInteger::randomRange($one, $this->order->subtract($one));
}
/**
* Performs range check
*/
public function rangeCheck(BigInteger $x)
{
static $zero;
if (!isset($zero)) {
$zero = new BigInteger();
}
if (!isset($this->order)) {
throw new \RuntimeException('setOrder needs to be called before this method');
}
if ($x->compare($this->order) > 0 || $x->compare($zero) <= 0) {
throw new \RangeException('x must be between 1 and the order of the curve');
}
}
/**
* Sets the Order
*/
public function setOrder(BigInteger $order)
{
$this->order = $order;
}
/**
* Returns the Order
*
* @return \phpseclib3\Math\BigInteger
*/
public function getOrder()
{
return $this->order;
}
/**
* Use a custom defined modular reduction function
*
* @return object
*/
public function setReduction(callable $func)
{
$this->factory->setReduction($func);
}
/**
* Returns the affine point
*
* @return object[]
*/
public function convertToAffine(array $p)
{
return $p;
}
/**
* Converts an affine point to a jacobian coordinate
*
* @return object[]
*/
public function convertToInternal(array $p)
{
return $p;
}
/**
* Negates a point
*
* @return object[]
*/
public function negatePoint(array $p)
{
$temp = [
$p[0],
$p[1]->negate()
];
if (isset($p[2])) {
$temp[] = $p[2];
}
return $temp;
}
/**
* Multiply and Add Points
*
* @return int[]
*/
public function multiplyAddPoints(array $points, array $scalars)
{
$p1 = $this->convertToInternal($points[0]);
$p2 = $this->convertToInternal($points[1]);
$p1 = $this->multiplyPoint($p1, $scalars[0]);
$p2 = $this->multiplyPoint($p2, $scalars[1]);
$r = $this->addPoint($p1, $p2);
return $this->convertToAffine($r);
}
}
How To Payment
Making a payment on our website is quick and secure. Start by logging in or creating an account. Select your preferred payment method, input the required details, and review the information. Once you confirm everything is correct, click on the "Submit Payment" button. You’ll receive instant confirmation and can track your payment status through your account dashboard. It’s an easy and secure process.