/home/kueuepay/public_html/vendor/phpseclib/phpseclib/phpseclib/Crypt/EC/BaseCurves/Prime.php
<?php

/**
 * Curves over y^2 = x^3 + a*x + b
 *
 * These are curves used in SEC 2 over prime fields: http://www.secg.org/SEC2-Ver-1.0.pdf
 * The curve is a weierstrass curve with a[1], a[3] and a[2] set to 0.
 *
 * Uses Jacobian Coordinates for speed if able:
 *
 * https://en.wikipedia.org/wiki/Jacobian_curve
 * https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <terrafrost@php.net>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 * @link      http://pear.php.net/package/Math_BigInteger
 */

namespace phpseclib3\Crypt\EC\BaseCurves;

use phpseclib3\Common\Functions\Strings;
use phpseclib3\Math\BigInteger;
use phpseclib3\Math\Common\FiniteField\Integer;
use phpseclib3\Math\PrimeField;
use phpseclib3\Math\PrimeField\Integer as PrimeInteger;

/**
 * Curves over y^2 = x^3 + a*x + b
 *
 * @author  Jim Wigginton <terrafrost@php.net>
 */
class Prime extends Base
{
    /**
     * Prime Field Integer factory
     *
     * @var \phpseclib3\Math\PrimeFields
     */
    protected $factory;

    /**
     * Cofficient for x^1
     *
     * @var object
     */
    protected $a;

    /**
     * Cofficient for x^0
     *
     * @var object
     */
    protected $b;

    /**
     * Base Point
     *
     * @var object
     */
    protected $p;

    /**
     * The number one over the specified finite field
     *
     * @var object
     */
    protected $one;

    /**
     * The number two over the specified finite field
     *
     * @var object
     */
    protected $two;

    /**
     * The number three over the specified finite field
     *
     * @var object
     */
    protected $three;

    /**
     * The number four over the specified finite field
     *
     * @var object
     */
    protected $four;

    /**
     * The number eight over the specified finite field
     *
     * @var object
     */
    protected $eight;

    /**
     * The modulo
     *
     * @var BigInteger
     */
    protected $modulo;

    /**
     * The Order
     *
     * @var BigInteger
     */
    protected $order;

    /**
     * Sets the modulo
     */
    public function setModulo(BigInteger $modulo)
    {
        $this->modulo = $modulo;
        $this->factory = new PrimeField($modulo);
        $this->two = $this->factory->newInteger(new BigInteger(2));
        $this->three = $this->factory->newInteger(new BigInteger(3));
        // used by jacobian coordinates
        $this->one = $this->factory->newInteger(new BigInteger(1));
        $this->four = $this->factory->newInteger(new BigInteger(4));
        $this->eight = $this->factory->newInteger(new BigInteger(8));
    }

    /**
     * Set coefficients a and b
     */
    public function setCoefficients(BigInteger $a, BigInteger $b)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }
        $this->a = $this->factory->newInteger($a);
        $this->b = $this->factory->newInteger($b);
    }

    /**
     * Set x and y coordinates for the base point
     *
     * @param BigInteger|PrimeInteger $x
     * @param BigInteger|PrimeInteger $y
     * @return PrimeInteger[]
     */
    public function setBasePoint($x, $y)
    {
        switch (true) {
            case !$x instanceof BigInteger && !$x instanceof PrimeInteger:
                throw new \UnexpectedValueException('Argument 1 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
            case !$y instanceof BigInteger && !$y instanceof PrimeInteger:
                throw new \UnexpectedValueException('Argument 2 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
        }
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }
        $this->p = [
            $x instanceof BigInteger ? $this->factory->newInteger($x) : $x,
            $y instanceof BigInteger ? $this->factory->newInteger($y) : $y
        ];
    }

    /**
     * Retrieve the base point as an array
     *
     * @return array
     */
    public function getBasePoint()
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }
        /*
        if (!isset($this->p)) {
            throw new \RuntimeException('setBasePoint needs to be called before this method');
        }
        */
        return $this->p;
    }

    /**
     * Adds two "fresh" jacobian form on the curve
     *
     * @return FiniteField[]
     */
    protected function jacobianAddPointMixedXY(array $p, array $q)
    {
        list($u1, $s1) = $p;
        list($u2, $s2) = $q;
        if ($u1->equals($u2)) {
            if (!$s1->equals($s2)) {
                return [];
            } else {
                return $this->doublePoint($p);
            }
        }
        $h = $u2->subtract($u1);
        $r = $s2->subtract($s1);
        $h2 = $h->multiply($h);
        $h3 = $h2->multiply($h);
        $v = $u1->multiply($h2);
        $x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
        $y3 = $r->multiply(
            $v->subtract($x3)
        )->subtract(
            $s1->multiply($h3)
        );
        return [$x3, $y3, $h];
    }

    /**
     * Adds one "fresh" jacobian form on the curve
     *
     * The second parameter should be the "fresh" one
     *
     * @return FiniteField[]
     */
    protected function jacobianAddPointMixedX(array $p, array $q)
    {
        list($u1, $s1, $z1) = $p;
        list($x2, $y2) = $q;

        $z12 = $z1->multiply($z1);

        $u2 = $x2->multiply($z12);
        $s2 = $y2->multiply($z12->multiply($z1));
        if ($u1->equals($u2)) {
            if (!$s1->equals($s2)) {
                return [];
            } else {
                return $this->doublePoint($p);
            }
        }
        $h = $u2->subtract($u1);
        $r = $s2->subtract($s1);
        $h2 = $h->multiply($h);
        $h3 = $h2->multiply($h);
        $v = $u1->multiply($h2);
        $x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
        $y3 = $r->multiply(
            $v->subtract($x3)
        )->subtract(
            $s1->multiply($h3)
        );
        $z3 = $h->multiply($z1);
        return [$x3, $y3, $z3];
    }

    /**
     * Adds two jacobian coordinates on the curve
     *
     * @return FiniteField[]
     */
    protected function jacobianAddPoint(array $p, array $q)
    {
        list($x1, $y1, $z1) = $p;
        list($x2, $y2, $z2) = $q;

        $z12 = $z1->multiply($z1);
        $z22 = $z2->multiply($z2);

        $u1 = $x1->multiply($z22);
        $u2 = $x2->multiply($z12);
        $s1 = $y1->multiply($z22->multiply($z2));
        $s2 = $y2->multiply($z12->multiply($z1));
        if ($u1->equals($u2)) {
            if (!$s1->equals($s2)) {
                return [];
            } else {
                return $this->doublePoint($p);
            }
        }
        $h = $u2->subtract($u1);
        $r = $s2->subtract($s1);
        $h2 = $h->multiply($h);
        $h3 = $h2->multiply($h);
        $v = $u1->multiply($h2);
        $x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
        $y3 = $r->multiply(
            $v->subtract($x3)
        )->subtract(
            $s1->multiply($h3)
        );
        $z3 = $h->multiply($z1)->multiply($z2);
        return [$x3, $y3, $z3];
    }

    /**
     * Adds two points on the curve
     *
     * @return FiniteField[]
     */
    public function addPoint(array $p, array $q)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p) || !count($q)) {
            if (count($q)) {
                return $q;
            }
            if (count($p)) {
                return $p;
            }
            return [];
        }

        // use jacobian coordinates
        if (isset($p[2]) && isset($q[2])) {
            if (isset($p['fresh']) && isset($q['fresh'])) {
                return $this->jacobianAddPointMixedXY($p, $q);
            }
            if (isset($p['fresh'])) {
                return $this->jacobianAddPointMixedX($q, $p);
            }
            if (isset($q['fresh'])) {
                return $this->jacobianAddPointMixedX($p, $q);
            }
            return $this->jacobianAddPoint($p, $q);
        }

        if (isset($p[2]) || isset($q[2])) {
            throw new \RuntimeException('Affine coordinates need to be manually converted to Jacobi coordinates or vice versa');
        }

        if ($p[0]->equals($q[0])) {
            if (!$p[1]->equals($q[1])) {
                return [];
            } else { // eg. doublePoint
                list($numerator, $denominator) = $this->doublePointHelper($p);
            }
        } else {
            $numerator = $q[1]->subtract($p[1]);
            $denominator = $q[0]->subtract($p[0]);
        }
        $slope = $numerator->divide($denominator);
        $x = $slope->multiply($slope)->subtract($p[0])->subtract($q[0]);
        $y = $slope->multiply($p[0]->subtract($x))->subtract($p[1]);

        return [$x, $y];
    }

    /**
     * Returns the numerator and denominator of the slope
     *
     * @return FiniteField[]
     */
    protected function doublePointHelper(array $p)
    {
        $numerator = $this->three->multiply($p[0])->multiply($p[0])->add($this->a);
        $denominator = $this->two->multiply($p[1]);
        return [$numerator, $denominator];
    }

    /**
     * Doubles a jacobian coordinate on the curve
     *
     * @return FiniteField[]
     */
    protected function jacobianDoublePoint(array $p)
    {
        list($x, $y, $z) = $p;
        $x2 = $x->multiply($x);
        $y2 = $y->multiply($y);
        $z2 = $z->multiply($z);
        $s = $this->four->multiply($x)->multiply($y2);
        $m1 = $this->three->multiply($x2);
        $m2 = $this->a->multiply($z2->multiply($z2));
        $m = $m1->add($m2);
        $x1 = $m->multiply($m)->subtract($this->two->multiply($s));
        $y1 = $m->multiply($s->subtract($x1))->subtract(
            $this->eight->multiply($y2->multiply($y2))
        );
        $z1 = $this->two->multiply($y)->multiply($z);
        return [$x1, $y1, $z1];
    }

    /**
     * Doubles a "fresh" jacobian coordinate on the curve
     *
     * @return FiniteField[]
     */
    protected function jacobianDoublePointMixed(array $p)
    {
        list($x, $y) = $p;
        $x2 = $x->multiply($x);
        $y2 = $y->multiply($y);
        $s = $this->four->multiply($x)->multiply($y2);
        $m1 = $this->three->multiply($x2);
        $m = $m1->add($this->a);
        $x1 = $m->multiply($m)->subtract($this->two->multiply($s));
        $y1 = $m->multiply($s->subtract($x1))->subtract(
            $this->eight->multiply($y2->multiply($y2))
        );
        $z1 = $this->two->multiply($y);
        return [$x1, $y1, $z1];
    }

    /**
     * Doubles a point on a curve
     *
     * @return FiniteField[]
     */
    public function doublePoint(array $p)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p)) {
            return [];
        }

        // use jacobian coordinates
        if (isset($p[2])) {
            if (isset($p['fresh'])) {
                return $this->jacobianDoublePointMixed($p);
            }
            return $this->jacobianDoublePoint($p);
        }

        list($numerator, $denominator) = $this->doublePointHelper($p);

        $slope = $numerator->divide($denominator);

        $x = $slope->multiply($slope)->subtract($p[0])->subtract($p[0]);
        $y = $slope->multiply($p[0]->subtract($x))->subtract($p[1]);

        return [$x, $y];
    }

    /**
     * Returns the X coordinate and the derived Y coordinate
     *
     * @return array
     */
    public function derivePoint($m)
    {
        $y = ord(Strings::shift($m));
        $x = new BigInteger($m, 256);
        $xp = $this->convertInteger($x);
        switch ($y) {
            case 2:
                $ypn = false;
                break;
            case 3:
                $ypn = true;
                break;
            default:
                throw new \RuntimeException('Coordinate not in recognized format');
        }
        $temp = $xp->multiply($this->a);
        $temp = $xp->multiply($xp)->multiply($xp)->add($temp);
        $temp = $temp->add($this->b);
        $b = $temp->squareRoot();
        if (!$b) {
            throw new \RuntimeException('Unable to derive Y coordinate');
        }
        $bn = $b->isOdd();
        $yp = $ypn == $bn ? $b : $b->negate();
        return [$xp, $yp];
    }

    /**
     * Tests whether or not the x / y values satisfy the equation
     *
     * @return boolean
     */
    public function verifyPoint(array $p)
    {
        list($x, $y) = $p;
        $lhs = $y->multiply($y);
        $temp = $x->multiply($this->a);
        $temp = $x->multiply($x)->multiply($x)->add($temp);
        $rhs = $temp->add($this->b);

        return $lhs->equals($rhs);
    }

    /**
     * Returns the modulo
     *
     * @return \phpseclib3\Math\BigInteger
     */
    public function getModulo()
    {
        return $this->modulo;
    }

    /**
     * Returns the a coefficient
     *
     * @return \phpseclib3\Math\PrimeField\Integer
     */
    public function getA()
    {
        return $this->a;
    }

    /**
     * Returns the a coefficient
     *
     * @return \phpseclib3\Math\PrimeField\Integer
     */
    public function getB()
    {
        return $this->b;
    }

    /**
     * Multiply and Add Points
     *
     * Adapted from:
     * https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/base.js#L125
     *
     * @return int[]
     */
    public function multiplyAddPoints(array $points, array $scalars)
    {
        $length = count($points);

        foreach ($points as &$point) {
            $point = $this->convertToInternal($point);
        }

        $wnd = [$this->getNAFPoints($points[0], 7)];
        $wndWidth = [isset($points[0]['nafwidth']) ? $points[0]['nafwidth'] : 7];
        for ($i = 1; $i < $length; $i++) {
            $wnd[] = $this->getNAFPoints($points[$i], 1);
            $wndWidth[] = isset($points[$i]['nafwidth']) ? $points[$i]['nafwidth'] : 1;
        }

        $naf = [];

        // comb all window NAFs

        $max = 0;
        for ($i = $length - 1; $i >= 1; $i -= 2) {
            $a = $i - 1;
            $b = $i;
            if ($wndWidth[$a] != 1 || $wndWidth[$b] != 1) {
                $naf[$a] = $scalars[$a]->getNAF($wndWidth[$a]);
                $naf[$b] = $scalars[$b]->getNAF($wndWidth[$b]);
                $max = max(count($naf[$a]), count($naf[$b]), $max);
                continue;
            }

            $comb = [
                $points[$a], // 1
                null,        // 3
                null,        // 5
                $points[$b]  // 7
            ];

            $comb[1] = $this->addPoint($points[$a], $points[$b]);
            $comb[2] = $this->addPoint($points[$a], $this->negatePoint($points[$b]));

            $index = [
                -3, /* -1 -1 */
                -1, /* -1  0 */
                -5, /* -1  1 */
                -7, /*  0 -1 */
                 0, /*  0 -1 */
                 7, /*  0  1 */
                 5, /*  1 -1 */
                 1, /*  1  0 */
                 3  /*  1  1 */
            ];

            $jsf = self::getJSFPoints($scalars[$a], $scalars[$b]);

            $max = max(count($jsf[0]), $max);
            if ($max > 0) {
                $naf[$a] = array_fill(0, $max, 0);
                $naf[$b] = array_fill(0, $max, 0);
            } else {
                $naf[$a] = [];
                $naf[$b] = [];
            }

            for ($j = 0; $j < $max; $j++) {
                $ja = isset($jsf[0][$j]) ? $jsf[0][$j] : 0;
                $jb = isset($jsf[1][$j]) ? $jsf[1][$j] : 0;

                $naf[$a][$j] = $index[3 * ($ja + 1) + $jb + 1];
                $naf[$b][$j] = 0;
                $wnd[$a] = $comb;
            }
        }

        $acc = [];
        $temp = [0, 0, 0, 0];
        for ($i = $max; $i >= 0; $i--) {
            $k = 0;
            while ($i >= 0) {
                $zero = true;
                for ($j = 0; $j < $length; $j++) {
                    $temp[$j] = isset($naf[$j][$i]) ? $naf[$j][$i] : 0;
                    if ($temp[$j] != 0) {
                        $zero = false;
                    }
                }
                if (!$zero) {
                    break;
                }
                $k++;
                $i--;
            }

            if ($i >= 0) {
                $k++;
            }
            while ($k--) {
                $acc = $this->doublePoint($acc);
            }

            if ($i < 0) {
                break;
            }

            for ($j = 0; $j < $length; $j++) {
                $z = $temp[$j];
                $p = null;
                if ($z == 0) {
                    continue;
                }
                $p = $z > 0 ?
                    $wnd[$j][($z - 1) >> 1] :
                    $this->negatePoint($wnd[$j][(-$z - 1) >> 1]);
                $acc = $this->addPoint($acc, $p);
            }
        }

        return $this->convertToAffine($acc);
    }

    /**
     * Precomputes NAF points
     *
     * Adapted from:
     * https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/base.js#L351
     *
     * @return int[]
     */
    private function getNAFPoints(array $point, $wnd)
    {
        if (isset($point['naf'])) {
            return $point['naf'];
        }

        $res = [$point];
        $max = (1 << $wnd) - 1;
        $dbl = $max == 1 ? null : $this->doublePoint($point);
        for ($i = 1; $i < $max; $i++) {
            $res[] = $this->addPoint($res[$i - 1], $dbl);
        }

        $point['naf'] = $res;

        /*
        $str = '';
        foreach ($res as $re) {
            $re[0] = bin2hex($re[0]->toBytes());
            $re[1] = bin2hex($re[1]->toBytes());
            $str.= "            ['$re[0]', '$re[1]'],\r\n";
        }
        file_put_contents('temp.txt', $str);
        exit;
        */

        return $res;
    }

    /**
     * Precomputes points in Joint Sparse Form
     *
     * Adapted from:
     * https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/utils.js#L96
     *
     * @return int[]
     */
    private static function getJSFPoints(Integer $k1, Integer $k2)
    {
        static $three;
        if (!isset($three)) {
            $three = new BigInteger(3);
        }

        $jsf = [[], []];
        $k1 = $k1->toBigInteger();
        $k2 = $k2->toBigInteger();
        $d1 = 0;
        $d2 = 0;

        while ($k1->compare(new BigInteger(-$d1)) > 0 || $k2->compare(new BigInteger(-$d2)) > 0) {
            // first phase
            $m14 = $k1->testBit(0) + 2 * $k1->testBit(1);
            $m14 += $d1;
            $m14 &= 3;

            $m24 = $k2->testBit(0) + 2 * $k2->testBit(1);
            $m24 += $d2;
            $m24 &= 3;

            if ($m14 == 3) {
                $m14 = -1;
            }
            if ($m24 == 3) {
                $m24 = -1;
            }

            $u1 = 0;
            if ($m14 & 1) { // if $m14 is odd
                $m8 = $k1->testBit(0) + 2 * $k1->testBit(1) + 4 * $k1->testBit(2);
                $m8 += $d1;
                $m8 &= 7;
                $u1 = ($m8 == 3 || $m8 == 5) && $m24 == 2 ? -$m14 : $m14;
            }
            $jsf[0][] = $u1;

            $u2 = 0;
            if ($m24 & 1) { // if $m24 is odd
                $m8 = $k2->testBit(0) + 2 * $k2->testBit(1) + 4 * $k2->testBit(2);
                $m8 += $d2;
                $m8 &= 7;
                $u2 = ($m8 == 3 || $m8 == 5) && $m14 == 2 ? -$m24 : $m24;
            }
            $jsf[1][] = $u2;

            // second phase
            if (2 * $d1 == $u1 + 1) {
                $d1 = 1 - $d1;
            }
            if (2 * $d2 == $u2 + 1) {
                $d2 = 1 - $d2;
            }
            $k1 = $k1->bitwise_rightShift(1);
            $k2 = $k2->bitwise_rightShift(1);
        }

        return $jsf;
    }

    /**
     * Returns the affine point
     *
     * A Jacobian Coordinate is of the form (x, y, z).
     * To convert a Jacobian Coordinate to an Affine Point
     * you do (x / z^2, y / z^3)
     *
     * @return \phpseclib3\Math\PrimeField\Integer[]
     */
    public function convertToAffine(array $p)
    {
        if (!isset($p[2])) {
            return $p;
        }
        list($x, $y, $z) = $p;
        $z = $this->one->divide($z);
        $z2 = $z->multiply($z);
        return [
            $x->multiply($z2),
            $y->multiply($z2)->multiply($z)
        ];
    }

    /**
     * Converts an affine point to a jacobian coordinate
     *
     * @return \phpseclib3\Math\PrimeField\Integer[]
     */
    public function convertToInternal(array $p)
    {
        if (isset($p[2])) {
            return $p;
        }

        $p[2] = clone $this->one;
        $p['fresh'] = true;
        return $p;
    }
}
Refund Policy
top

At NFC Pay, we strive to provide a seamless and satisfactory experience with our services. This Refund Policy outlines the circumstances under which refunds may be issued for transactions made through our platform. Please read this policy carefully to understand your rights regarding refunds.
1. Eligibility for Refunds
Refunds may be considered under the following circumstances:
 

2. Non-Refundable Situations
Refunds will generally not be issued in the following situations:
 

3. Refund Process
To request a refund, please follow these steps:
 

  1. Contact Customer Support: Reach out to our customer support team via [email/phone/app support chat] with your transaction details, including the date, amount, and reason for the refund request.
  2. Investigation: Our team will review your request and may ask for additional information or documentation to support your claim. This process typically takes [5-10 business days], depending on the complexity of the issue.
  3. Refund Decision: After reviewing your request, we will notify you of our decision. If approved, the refund will be processed back to your original payment method. The timing of the refund will depend on your bank or payment provider and may take up to [10 business days] to reflect in your account.

4. Refund Exceptions
Certain transactions may be subject to specific terms and conditions, including non-refundable fees or charges. Please review the terms associated with each transaction carefully, as some fees may not be eligible for refunds.
5. Modifications to the Refund Policy
NFC Pay reserves the right to modify this Refund Policy at any time. Changes will be communicated through updates on our website and app, and the effective date will be updated accordingly. We encourage you to review this policy periodically to stay informed about our refund practices.
By using NFC Pay, you agree to this Refund Policy and understand the terms under which refunds may be issued. Our goal is to ensure a fair and transparent refund process, providing you with confidence and peace of mind when using our services.