<?php
/**
* Curve methods common to all curves
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Crypt\EC\BaseCurves;
use phpseclib3\Math\BigInteger;
/**
* Base
*
* @author Jim Wigginton <terrafrost@php.net>
*/
abstract class Base
{
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Finite Field Integer factory
*
* @var \phpseclib3\Math\FiniteField\Integer
*/
protected $factory;
/**
* Returns a random integer
*
* @return object
*/
public function randomInteger()
{
return $this->factory->randomInteger();
}
/**
* Converts a BigInteger to a \phpseclib3\Math\FiniteField\Integer integer
*
* @return object
*/
public function convertInteger(BigInteger $x)
{
return $this->factory->newInteger($x);
}
/**
* Returns the length, in bytes, of the modulo
*
* @return integer
*/
public function getLengthInBytes()
{
return $this->factory->getLengthInBytes();
}
/**
* Returns the length, in bits, of the modulo
*
* @return integer
*/
public function getLength()
{
return $this->factory->getLength();
}
/**
* Multiply a point on the curve by a scalar
*
* Uses the montgomery ladder technique as described here:
*
* https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
* https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772
*
* @return array
*/
public function multiplyPoint(array $p, BigInteger $d)
{
$alreadyInternal = isset($p[2]);
$r = $alreadyInternal ?
[[], $p] :
[[], $this->convertToInternal($p)];
$d = $d->toBits();
for ($i = 0; $i < strlen($d); $i++) {
$d_i = (int) $d[$i];
$r[1 - $d_i] = $this->addPoint($r[0], $r[1]);
$r[$d_i] = $this->doublePoint($r[$d_i]);
}
return $alreadyInternal ? $r[0] : $this->convertToAffine($r[0]);
}
/**
* Creates a random scalar multiplier
*
* @return BigInteger
*/
public function createRandomMultiplier()
{
static $one;
if (!isset($one)) {
$one = new BigInteger(1);
}
return BigInteger::randomRange($one, $this->order->subtract($one));
}
/**
* Performs range check
*/
public function rangeCheck(BigInteger $x)
{
static $zero;
if (!isset($zero)) {
$zero = new BigInteger();
}
if (!isset($this->order)) {
throw new \RuntimeException('setOrder needs to be called before this method');
}
if ($x->compare($this->order) > 0 || $x->compare($zero) <= 0) {
throw new \RangeException('x must be between 1 and the order of the curve');
}
}
/**
* Sets the Order
*/
public function setOrder(BigInteger $order)
{
$this->order = $order;
}
/**
* Returns the Order
*
* @return \phpseclib3\Math\BigInteger
*/
public function getOrder()
{
return $this->order;
}
/**
* Use a custom defined modular reduction function
*
* @return object
*/
public function setReduction(callable $func)
{
$this->factory->setReduction($func);
}
/**
* Returns the affine point
*
* @return object[]
*/
public function convertToAffine(array $p)
{
return $p;
}
/**
* Converts an affine point to a jacobian coordinate
*
* @return object[]
*/
public function convertToInternal(array $p)
{
return $p;
}
/**
* Negates a point
*
* @return object[]
*/
public function negatePoint(array $p)
{
$temp = [
$p[0],
$p[1]->negate()
];
if (isset($p[2])) {
$temp[] = $p[2];
}
return $temp;
}
/**
* Multiply and Add Points
*
* @return int[]
*/
public function multiplyAddPoints(array $points, array $scalars)
{
$p1 = $this->convertToInternal($points[0]);
$p2 = $this->convertToInternal($points[1]);
$p1 = $this->multiplyPoint($p1, $scalars[0]);
$p2 = $this->multiplyPoint($p2, $scalars[1]);
$r = $this->addPoint($p1, $p2);
return $this->convertToAffine($r);
}
}
At NFC Pay, we strive to provide a seamless and satisfactory experience with our services. This Refund Policy outlines the circumstances under which refunds may be issued for transactions made through our platform. Please read this policy carefully to understand your rights regarding refunds.
1. Eligibility for Refunds
Refunds may be considered under the following circumstances:
2. Non-Refundable Situations
Refunds will generally not be issued in the following situations:
3. Refund Process
To request a refund, please follow these steps:
4. Refund Exceptions
Certain transactions may be subject to specific terms and conditions, including non-refundable fees or charges. Please review the terms associated with each transaction carefully, as some fees may not be eligible for refunds.
5. Modifications to the Refund Policy
NFC Pay reserves the right to modify this Refund Policy at any time. Changes will be communicated through updates on our website and app, and the effective date will be updated accordingly. We encourage you to review this policy periodically to stay informed about our refund practices.
By using NFC Pay, you agree to this Refund Policy and understand the terms under which refunds may be issued. Our goal is to ensure a fair and transparent refund process, providing you with confidence and peace of mind when using our services.