<?php
/**
* Curves over y^2 = x^3 + a*x + x
*
* Technically, a Montgomery curve has a coefficient for y^2 but for Curve25519 and Curve448 that
* coefficient is 1.
*
* Curve25519 and Curve448 do not make use of the y coordinate, which makes it unsuitable for use
* with ECDSA / EdDSA. A few other differences between Curve25519 and Ed25519 are discussed at
* https://crypto.stackexchange.com/a/43058/4520
*
* More info:
*
* https://en.wikipedia.org/wiki/Montgomery_curve
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2019 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Crypt\EC\BaseCurves;
use phpseclib3\Crypt\EC\Curves\Curve25519;
use phpseclib3\Math\BigInteger;
use phpseclib3\Math\PrimeField;
use phpseclib3\Math\PrimeField\Integer as PrimeInteger;
/**
* Curves over y^2 = x^3 + a*x + x
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class Montgomery extends Base
{
/**
* Prime Field Integer factory
*
* @var \phpseclib3\Math\PrimeField
*/
protected $factory;
/**
* Cofficient for x
*
* @var object
*/
protected $a;
/**
* Constant used for point doubling
*
* @var object
*/
protected $a24;
/**
* The Number Zero
*
* @var object
*/
protected $zero;
/**
* The Number One
*
* @var object
*/
protected $one;
/**
* Base Point
*
* @var object
*/
protected $p;
/**
* The modulo
*
* @var BigInteger
*/
protected $modulo;
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Sets the modulo
*/
public function setModulo(BigInteger $modulo)
{
$this->modulo = $modulo;
$this->factory = new PrimeField($modulo);
$this->zero = $this->factory->newInteger(new BigInteger());
$this->one = $this->factory->newInteger(new BigInteger(1));
}
/**
* Set coefficients a
*/
public function setCoefficients(BigInteger $a)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->a = $this->factory->newInteger($a);
$two = $this->factory->newInteger(new BigInteger(2));
$four = $this->factory->newInteger(new BigInteger(4));
$this->a24 = $this->a->subtract($two)->divide($four);
}
/**
* Set x and y coordinates for the base point
*
* @param BigInteger|PrimeInteger $x
* @param BigInteger|PrimeInteger $y
* @return PrimeInteger[]
*/
public function setBasePoint($x, $y)
{
switch (true) {
case !$x instanceof BigInteger && !$x instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 1 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
case !$y instanceof BigInteger && !$y instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 2 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
}
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->p = [
$x instanceof BigInteger ? $this->factory->newInteger($x) : $x,
$y instanceof BigInteger ? $this->factory->newInteger($y) : $y
];
}
/**
* Retrieve the base point as an array
*
* @return array
*/
public function getBasePoint()
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
/*
if (!isset($this->p)) {
throw new \RuntimeException('setBasePoint needs to be called before this method');
}
*/
return $this->p;
}
/**
* Doubles and adds a point on a curve
*
* See https://tools.ietf.org/html/draft-ietf-tls-curve25519-01#appendix-A.1.3
*
* @return FiniteField[][]
*/
private function doubleAndAddPoint(array $p, array $q, PrimeInteger $x1)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
return [];
}
if (!isset($p[1])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to XZ coordinates');
}
list($x2, $z2) = $p;
list($x3, $z3) = $q;
$a = $x2->add($z2);
$aa = $a->multiply($a);
$b = $x2->subtract($z2);
$bb = $b->multiply($b);
$e = $aa->subtract($bb);
$c = $x3->add($z3);
$d = $x3->subtract($z3);
$da = $d->multiply($a);
$cb = $c->multiply($b);
$temp = $da->add($cb);
$x5 = $temp->multiply($temp);
$temp = $da->subtract($cb);
$z5 = $x1->multiply($temp->multiply($temp));
$x4 = $aa->multiply($bb);
$temp = static::class == Curve25519::class ? $bb : $aa;
$z4 = $e->multiply($temp->add($this->a24->multiply($e)));
return [
[$x4, $z4],
[$x5, $z5]
];
}
/**
* Multiply a point on the curve by a scalar
*
* Uses the montgomery ladder technique as described here:
*
* https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
* https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772
*
* @return array
*/
public function multiplyPoint(array $p, BigInteger $d)
{
$p1 = [$this->one, $this->zero];
$alreadyInternal = isset($x[1]);
$p2 = $this->convertToInternal($p);
$x = $p[0];
$b = $d->toBits();
$b = str_pad($b, 256, '0', STR_PAD_LEFT);
for ($i = 0; $i < strlen($b); $i++) {
$b_i = (int) $b[$i];
if ($b_i) {
list($p2, $p1) = $this->doubleAndAddPoint($p2, $p1, $x);
} else {
list($p1, $p2) = $this->doubleAndAddPoint($p1, $p2, $x);
}
}
return $alreadyInternal ? $p1 : $this->convertToAffine($p1);
}
/**
* Converts an affine point to an XZ coordinate
*
* From https://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html
*
* XZ coordinates represent x y as X Z satsfying the following equations:
*
* x=X/Z
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (empty($p)) {
return [clone $this->zero, clone $this->one];
}
if (isset($p[1])) {
return $p;
}
$p[1] = clone $this->one;
return $p;
}
/**
* Returns the affine point
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToAffine(array $p)
{
if (!isset($p[1])) {
return $p;
}
list($x, $z) = $p;
return [$x->divide($z)];
}
}
About Section
NFC Pay was founded with a vision to transform the way people handle transactions. Our journey is defined by a commitment to innovation, security, and convenience. We strive to deliver seamless, user-friendly payment solutions that make everyday transactions effortless and secure. Our mission is to empower you to pay with ease and confidence, anytime, anywhere.
FAQ Section
Here are answers to some common questions about NFC Pay. We aim to provide clear and concise information to help you understand how our platform works and how it can benefit you. If you have any further inquiries, please don’t hesitate to contact our support team.
Download the app and sign up using your email or phone number, then complete the verification process.
Yes, we use advanced encryption and security protocols to protect your payment details.
Absolutely, you can link multiple debit or credit cards to your wallet.
Go to the transfer section, select the recipient, enter the amount, and authorize the transfer.
Use the “Forgot PIN” feature in the app to reset it following the provided instructions.
Sign up for a merchant account through the app and follow the setup instructions to start accepting payments.
Yes, you can view and track your payment status in the account dashboard