/home/kueuepay/www/vendor/phpseclib/phpseclib/phpseclib/Crypt/EC/BaseCurves/KoblitzPrime.php
<?php

/**
 * Generalized Koblitz Curves over y^2 = x^3 + b.
 *
 * According to http://www.secg.org/SEC2-Ver-1.0.pdf Koblitz curves are over the GF(2**m)
 * finite field. Both the $a$ and $b$ coefficients are either 0 or 1. However, SEC2
 * generalizes the definition to include curves over GF(P) "which possess an efficiently
 * computable endomorphism".
 *
 * For these generalized Koblitz curves $b$ doesn't have to be 0 or 1. Whether or not $a$
 * has any restrictions on it is unclear, however, for all the GF(P) Koblitz curves defined
 * in SEC2 v1.0 $a$ is $0$ so all of the methods defined herein will assume that it is.
 *
 * I suppose we could rename the $b$ coefficient to $a$, however, the documentation refers
 * to $b$ so we'll just keep it.
 *
 * If a later version of SEC2 comes out wherein some $a$ values are non-zero we can create a
 * new method for those. eg. KoblitzA1Prime.php or something.
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <terrafrost@php.net>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 * @link      http://pear.php.net/package/Math_BigInteger
 */

namespace phpseclib3\Crypt\EC\BaseCurves;

use phpseclib3\Math\BigInteger;
use phpseclib3\Math\PrimeField;

/**
 * Curves over y^2 = x^3 + b
 *
 * @author  Jim Wigginton <terrafrost@php.net>
 */
class KoblitzPrime extends Prime
{
    /**
     * Basis
     *
     * @var list<array{a: BigInteger, b: BigInteger}>
     */
    protected $basis;

    /**
     * Beta
     *
     * @var PrimeField\Integer
     */
    protected $beta;

    // don't overwrite setCoefficients() with one that only accepts one parameter so that
    // one might be able to switch between KoblitzPrime and Prime more easily (for benchmarking
    // purposes).

    /**
     * Multiply and Add Points
     *
     * Uses a efficiently computable endomorphism to achieve a slight speedup
     *
     * Adapted from:
     * https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/short.js#L219
     *
     * @return int[]
     */
    public function multiplyAddPoints(array $points, array $scalars)
    {
        static $zero, $one, $two;
        if (!isset($two)) {
            $two = new BigInteger(2);
            $one = new BigInteger(1);
        }

        if (!isset($this->beta)) {
            // get roots
            $inv = $this->one->divide($this->two)->negate();
            $s = $this->three->negate()->squareRoot()->multiply($inv);
            $betas = [
                $inv->add($s),
                $inv->subtract($s)
            ];
            $this->beta = $betas[0]->compare($betas[1]) < 0 ? $betas[0] : $betas[1];
            //echo strtoupper($this->beta->toHex(true)) . "\n"; exit;
        }

        if (!isset($this->basis)) {
            $factory = new PrimeField($this->order);
            $tempOne = $factory->newInteger($one);
            $tempTwo = $factory->newInteger($two);
            $tempThree = $factory->newInteger(new BigInteger(3));

            $inv = $tempOne->divide($tempTwo)->negate();
            $s = $tempThree->negate()->squareRoot()->multiply($inv);

            $lambdas = [
                $inv->add($s),
                $inv->subtract($s)
            ];

            $lhs = $this->multiplyPoint($this->p, $lambdas[0])[0];
            $rhs = $this->p[0]->multiply($this->beta);
            $lambda = $lhs->equals($rhs) ? $lambdas[0] : $lambdas[1];

            $this->basis = static::extendedGCD($lambda->toBigInteger(), $this->order);
            ///*
            foreach ($this->basis as $basis) {
                echo strtoupper($basis['a']->toHex(true)) . "\n";
                echo strtoupper($basis['b']->toHex(true)) . "\n\n";
            }
            exit;
            //*/
        }

        $npoints = $nscalars = [];
        for ($i = 0; $i < count($points); $i++) {
            $p = $points[$i];
            $k = $scalars[$i]->toBigInteger();

            // begin split
            list($v1, $v2) = $this->basis;

            $c1 = $v2['b']->multiply($k);
            list($c1, $r) = $c1->divide($this->order);
            if ($this->order->compare($r->multiply($two)) <= 0) {
                $c1 = $c1->add($one);
            }

            $c2 = $v1['b']->negate()->multiply($k);
            list($c2, $r) = $c2->divide($this->order);
            if ($this->order->compare($r->multiply($two)) <= 0) {
                $c2 = $c2->add($one);
            }

            $p1 = $c1->multiply($v1['a']);
            $p2 = $c2->multiply($v2['a']);
            $q1 = $c1->multiply($v1['b']);
            $q2 = $c2->multiply($v2['b']);

            $k1 = $k->subtract($p1)->subtract($p2);
            $k2 = $q1->add($q2)->negate();
            // end split

            $beta = [
                $p[0]->multiply($this->beta),
                $p[1],
                clone $this->one
            ];

            if (isset($p['naf'])) {
                $beta['naf'] = array_map(function ($p) {
                    return [
                        $p[0]->multiply($this->beta),
                        $p[1],
                        clone $this->one
                    ];
                }, $p['naf']);
                $beta['nafwidth'] = $p['nafwidth'];
            }

            if ($k1->isNegative()) {
                $k1 = $k1->negate();
                $p = $this->negatePoint($p);
            }

            if ($k2->isNegative()) {
                $k2 = $k2->negate();
                $beta = $this->negatePoint($beta);
            }

            $pos = 2 * $i;
            $npoints[$pos] = $p;
            $nscalars[$pos] = $this->factory->newInteger($k1);

            $pos++;
            $npoints[$pos] = $beta;
            $nscalars[$pos] = $this->factory->newInteger($k2);
        }

        return parent::multiplyAddPoints($npoints, $nscalars);
    }

    /**
     * Returns the numerator and denominator of the slope
     *
     * @return FiniteField[]
     */
    protected function doublePointHelper(array $p)
    {
        $numerator = $this->three->multiply($p[0])->multiply($p[0]);
        $denominator = $this->two->multiply($p[1]);
        return [$numerator, $denominator];
    }

    /**
     * Doubles a jacobian coordinate on the curve
     *
     * See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
     *
     * @return FiniteField[]
     */
    protected function jacobianDoublePoint(array $p)
    {
        list($x1, $y1, $z1) = $p;
        $a = $x1->multiply($x1);
        $b = $y1->multiply($y1);
        $c = $b->multiply($b);
        $d = $x1->add($b);
        $d = $d->multiply($d)->subtract($a)->subtract($c)->multiply($this->two);
        $e = $this->three->multiply($a);
        $f = $e->multiply($e);
        $x3 = $f->subtract($this->two->multiply($d));
        $y3 = $e->multiply($d->subtract($x3))->subtract(
            $this->eight->multiply($c)
        );
        $z3 = $this->two->multiply($y1)->multiply($z1);
        return [$x3, $y3, $z3];
    }

    /**
     * Doubles a "fresh" jacobian coordinate on the curve
     *
     * See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
     *
     * @return FiniteField[]
     */
    protected function jacobianDoublePointMixed(array $p)
    {
        list($x1, $y1) = $p;
        $xx = $x1->multiply($x1);
        $yy = $y1->multiply($y1);
        $yyyy = $yy->multiply($yy);
        $s = $x1->add($yy);
        $s = $s->multiply($s)->subtract($xx)->subtract($yyyy)->multiply($this->two);
        $m = $this->three->multiply($xx);
        $t = $m->multiply($m)->subtract($this->two->multiply($s));
        $x3 = $t;
        $y3 = $s->subtract($t);
        $y3 = $m->multiply($y3)->subtract($this->eight->multiply($yyyy));
        $z3 = $this->two->multiply($y1);
        return [$x3, $y3, $z3];
    }

    /**
     * Tests whether or not the x / y values satisfy the equation
     *
     * @return boolean
     */
    public function verifyPoint(array $p)
    {
        list($x, $y) = $p;
        $lhs = $y->multiply($y);
        $temp = $x->multiply($x)->multiply($x);
        $rhs = $temp->add($this->b);

        return $lhs->equals($rhs);
    }

    /**
     * Calculates the parameters needed from the Euclidean algorithm as discussed at
     * http://diamond.boisestate.edu/~liljanab/MATH308/GuideToECC.pdf#page=148
     *
     * @param BigInteger $u
     * @param BigInteger $v
     * @return BigInteger[]
     */
    protected static function extendedGCD(BigInteger $u, BigInteger $v)
    {
        $one = new BigInteger(1);
        $zero = new BigInteger();

        $a = clone $one;
        $b = clone $zero;
        $c = clone $zero;
        $d = clone $one;

        $stop = $v->bitwise_rightShift($v->getLength() >> 1);

        $a1 = clone $zero;
        $b1 = clone $zero;
        $a2 = clone $zero;
        $b2 = clone $zero;

        $postGreatestIndex = 0;

        while (!$v->equals($zero)) {
            list($q) = $u->divide($v);

            $temp = $u;
            $u = $v;
            $v = $temp->subtract($v->multiply($q));

            $temp = $a;
            $a = $c;
            $c = $temp->subtract($a->multiply($q));

            $temp = $b;
            $b = $d;
            $d = $temp->subtract($b->multiply($q));

            if ($v->compare($stop) > 0) {
                $a0 = $v;
                $b0 = $c;
            } else {
                $postGreatestIndex++;
            }

            if ($postGreatestIndex == 1) {
                $a1 = $v;
                $b1 = $c->negate();
            }

            if ($postGreatestIndex == 2) {
                $rhs = $a0->multiply($a0)->add($b0->multiply($b0));
                $lhs = $v->multiply($v)->add($b->multiply($b));
                if ($lhs->compare($rhs) <= 0) {
                    $a2 = $a0;
                    $b2 = $b0->negate();
                } else {
                    $a2 = $v;
                    $b2 = $c->negate();
                }

                break;
            }
        }

        return [
            ['a' => $a1, 'b' => $b1],
            ['a' => $a2, 'b' => $b2]
        ];
    }
}
About
top

About NFC Pay: Our Story and Mission

NFC Pay was founded with a vision to transform the way people handle transactions. Our journey is defined by a commitment to innovation, security, and convenience. We strive to deliver seamless, user-friendly payment solutions that make everyday transactions effortless and secure. Our mission is to empower you to pay with ease and confidence, anytime, anywhere.

  • Simplifying Payments, One Tap at a Time.
  • Reinventing Your Wallet for Modern Convenience.
  • Smart Payments for a Effortless Lifestyle.
  • Experience the Ease of Tap and Pay.
  • Innovative Solutions for Your Daily Transactions.

Frequently Asked Questions About NFC Pay

Here are answers to some common questions about NFC Pay. We aim to provide clear and concise information to help you understand how our platform works and how it can benefit you. If you have any further inquiries, please don’t hesitate to contact our support team.

faq-img

How do I register for NFC Pay?

Download the app and sign up using your email or phone number, then complete the verification process.

Is my payment information secure?

Yes, we use advanced encryption and security protocols to protect your payment details.

Can I add multiple cards to my NFC Pay wallet?

Absolutely, you can link multiple debit or credit cards to your wallet.

How do I transfer money to another user?

Go to the transfer section, select the recipient, enter the amount, and authorize the transfer.

What should I do if I forget my PIN?

Use the “Forgot PIN” feature in the app to reset it following the provided instructions.

How can I activate my merchant account?

Sign up for a merchant account through the app and follow the setup instructions to start accepting payments.

Can I track my payment status?

Yes, you can view and track your payment status in the account dashboard