Proven Expertise
Our team brings years of experience in the digital payments industry to provide reliable services.
<?php
namespace Matrix;
class Functions
{
/**
* Validates an array of matrix, converting an array to a matrix if required.
*
* @param Matrix|array $matrix Matrix or an array to treat as a matrix.
* @return Matrix The new matrix
* @throws Exception If argument isn't a valid matrix or array.
*/
private static function validateMatrix($matrix)
{
if (is_array($matrix)) {
$matrix = new Matrix($matrix);
}
if (!$matrix instanceof Matrix) {
throw new Exception('Must be Matrix or array');
}
return $matrix;
}
/**
* Calculate the adjoint of the matrix
*
* @param Matrix $matrix The matrix whose adjoint we wish to calculate
* @return Matrix
*
* @throws Exception
*/
private static function getAdjoint(Matrix $matrix)
{
return self::transpose(
self::getCofactors($matrix)
);
}
/**
* Return the adjoint of this matrix
* The adjugate, classical adjoint, or adjunct of a square matrix is the transpose of its cofactor matrix.
* The adjugate has sometimes been called the "adjoint", but today the "adjoint" of a matrix normally refers
* to its corresponding adjoint operator, which is its conjugate transpose.
*
* @param Matrix|array $matrix The matrix whose adjoint we wish to calculate
* @return Matrix
* @throws Exception
**/
public static function adjoint($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Adjoint can only be calculated for a square matrix');
}
return self::getAdjoint($matrix);
}
/**
* Calculate the cofactors of the matrix
*
* @param Matrix $matrix The matrix whose cofactors we wish to calculate
* @return Matrix
*
* @throws Exception
*/
private static function getCofactors(Matrix $matrix)
{
$cofactors = self::getMinors($matrix);
$dimensions = $matrix->rows;
$cof = 1;
for ($i = 0; $i < $dimensions; ++$i) {
$cofs = $cof;
for ($j = 0; $j < $dimensions; ++$j) {
$cofactors[$i][$j] *= $cofs;
$cofs = -$cofs;
}
$cof = -$cof;
}
return new Matrix($cofactors);
}
/**
* Return the cofactors of this matrix
*
* @param Matrix|array $matrix The matrix whose cofactors we wish to calculate
* @return Matrix
*
* @throws Exception
*/
public static function cofactors($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Cofactors can only be calculated for a square matrix');
}
return self::getCofactors($matrix);
}
/**
* @param Matrix $matrix
* @param int $row
* @param int $column
* @return float
* @throws Exception
*/
private static function getDeterminantSegment(Matrix $matrix, $row, $column)
{
$tmpMatrix = $matrix->toArray();
unset($tmpMatrix[$row]);
array_walk(
$tmpMatrix,
function (&$row) use ($column) {
unset($row[$column]);
}
);
return self::getDeterminant(new Matrix($tmpMatrix));
}
/**
* Calculate the determinant of the matrix
*
* @param Matrix $matrix The matrix whose determinant we wish to calculate
* @return float
*
* @throws Exception
*/
private static function getDeterminant(Matrix $matrix)
{
$dimensions = $matrix->rows;
$determinant = 0;
switch ($dimensions) {
case 1:
$determinant = $matrix->getValue(1, 1);
break;
case 2:
$determinant = $matrix->getValue(1, 1) * $matrix->getValue(2, 2) -
$matrix->getValue(1, 2) * $matrix->getValue(2, 1);
break;
default:
for ($i = 1; $i <= $dimensions; ++$i) {
$det = $matrix->getValue(1, $i) * self::getDeterminantSegment($matrix, 0, $i - 1);
if (($i % 2) == 0) {
$determinant -= $det;
} else {
$determinant += $det;
}
}
break;
}
return $determinant;
}
/**
* Return the determinant of this matrix
*
* @param Matrix|array $matrix The matrix whose determinant we wish to calculate
* @return float
* @throws Exception
**/
public static function determinant($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Determinant can only be calculated for a square matrix');
}
return self::getDeterminant($matrix);
}
/**
* Return the diagonal of this matrix
*
* @param Matrix|array $matrix The matrix whose diagonal we wish to calculate
* @return Matrix
* @throws Exception
**/
public static function diagonal($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Diagonal can only be extracted from a square matrix');
}
$dimensions = $matrix->rows;
$grid = Builder::createFilledMatrix(0, $dimensions, $dimensions)
->toArray();
for ($i = 0; $i < $dimensions; ++$i) {
$grid[$i][$i] = $matrix->getValue($i + 1, $i + 1);
}
return new Matrix($grid);
}
/**
* Return the antidiagonal of this matrix
*
* @param Matrix|array $matrix The matrix whose antidiagonal we wish to calculate
* @return Matrix
* @throws Exception
**/
public static function antidiagonal($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Anti-Diagonal can only be extracted from a square matrix');
}
$dimensions = $matrix->rows;
$grid = Builder::createFilledMatrix(0, $dimensions, $dimensions)
->toArray();
for ($i = 0; $i < $dimensions; ++$i) {
$grid[$i][$dimensions - $i - 1] = $matrix->getValue($i + 1, $dimensions - $i);
}
return new Matrix($grid);
}
/**
* Return the identity matrix
* The identity matrix, or sometimes ambiguously called a unit matrix, of size n is the n × n square matrix
* with ones on the main diagonal and zeros elsewhere
*
* @param Matrix|array $matrix The matrix whose identity we wish to calculate
* @return Matrix
* @throws Exception
**/
public static function identity($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Identity can only be created for a square matrix');
}
$dimensions = $matrix->rows;
return Builder::createIdentityMatrix($dimensions);
}
/**
* Return the inverse of this matrix
*
* @param Matrix|array $matrix The matrix whose inverse we wish to calculate
* @return Matrix
* @throws Exception
**/
public static function inverse($matrix, string $type = 'inverse')
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception(ucfirst($type) . ' can only be calculated for a square matrix');
}
$determinant = self::getDeterminant($matrix);
if ($determinant == 0.0) {
throw new Div0Exception(ucfirst($type) . ' can only be calculated for a matrix with a non-zero determinant');
}
if ($matrix->rows == 1) {
return new Matrix([[1 / $matrix->getValue(1, 1)]]);
}
return self::getAdjoint($matrix)
->multiply(1 / $determinant);
}
/**
* Calculate the minors of the matrix
*
* @param Matrix $matrix The matrix whose minors we wish to calculate
* @return array[]
*
* @throws Exception
*/
protected static function getMinors(Matrix $matrix)
{
$minors = $matrix->toArray();
$dimensions = $matrix->rows;
if ($dimensions == 1) {
return $minors;
}
for ($i = 0; $i < $dimensions; ++$i) {
for ($j = 0; $j < $dimensions; ++$j) {
$minors[$i][$j] = self::getDeterminantSegment($matrix, $i, $j);
}
}
return $minors;
}
/**
* Return the minors of the matrix
* The minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or
* more of its rows or columns.
* Minors obtained by removing just one row and one column from square matrices (first minors) are required for
* calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of
* square matrices.
*
* @param Matrix|array $matrix The matrix whose minors we wish to calculate
* @return Matrix
* @throws Exception
**/
public static function minors($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Minors can only be calculated for a square matrix');
}
return new Matrix(self::getMinors($matrix));
}
/**
* Return the trace of this matrix
* The trace is defined as the sum of the elements on the main diagonal (the diagonal from the upper left to the lower right)
* of the matrix
*
* @param Matrix|array $matrix The matrix whose trace we wish to calculate
* @return float
* @throws Exception
**/
public static function trace($matrix)
{
$matrix = self::validateMatrix($matrix);
if (!$matrix->isSquare()) {
throw new Exception('Trace can only be extracted from a square matrix');
}
$dimensions = $matrix->rows;
$result = 0;
for ($i = 1; $i <= $dimensions; ++$i) {
$result += $matrix->getValue($i, $i);
}
return $result;
}
/**
* Return the transpose of this matrix
*
* @param Matrix|\a $matrix The matrix whose transpose we wish to calculate
* @return Matrix
**/
public static function transpose($matrix)
{
$matrix = self::validateMatrix($matrix);
$array = array_values(array_merge([null], $matrix->toArray()));
$grid = call_user_func_array(
'array_map',
$array
);
return new Matrix($grid);
}
}
How it Works
Getting started with NFC Pay is simple and quick. Register your account, add your cards, and you're ready to make payments in no time. Whether you're paying at a store, sending money to a friend, or managing your merchant transactions, NFC Pay makes it easy and secure.
Download the NFC Pay app and sign up with your email or phone number. Complete the registration process by verifying your identity, and set up your secure PIN to protect your account.
Link your debit or credit cards to your NFC Pay wallet. Simply scan your card or enter the details manually, and you’re set to load funds, shop, and pay with ease.
To pay, simply tap your phone or scan the QR code at checkout. You can also transfer money to other users with a few taps. Enjoy fast, contactless payments with top-notch security.
Security System
NFC Pay prioritizes your security with advanced features that safeguard every transaction. From SMS or email verification to end-to-end encryption, we've implemented robust measures to ensure your data is always protected. Our security systems are designed to prevent unauthorized access and provide you with a safe and reliable payment experience.
Receive instant alerts for every transaction to keep track of your account activities.
Verify your identity through our Know Your Customer process to prevent fraud and enhance security.
Dramatically supply transparent backward deliverables before caward comp internal or "organic" sources.
All your data and transactions are encrypted, ensuring that your sensitive information remains private.
Monitor unusual activity patterns to detect and prevent suspicious behavior in real-time.
Why Choice Us
With NFC Pay, you get a trusted platform backed by proven expertise and a commitment to quality. We put our customers first, offering innovative solutions tailored to your needs, ensuring every transaction is secure, swift, and seamless.
Our team brings years of experience in the digital payments industry to provide reliable services.
We prioritize excellence, ensuring that every aspect of our platform meets the highest standards.
Your needs drive our solutions, and we are dedicated to delivering a superior user experience.
We continuously evolve, integrating the latest technologies to enhance your payment experience.
Testimonial Section
Hear from our users who trust NFC Pay for their everyday transactions. Our commitment to security, ease of use, and exceptional service shines through in their experiences. See why our clients choose NFC Pay for their payment needs and how it has transformed the way they manage their finances.
App Section
Unlock the full potential of NFC Pay by downloading our app, designed to bring secure, swift, and smart transactions to your fingertips. Whether you're paying at a store, transferring money to friends, or managing your business payments, the NFC Pay app makes it effortless. Available on both iOS and Android, it's your all-in-one solution for convenient and reliable digital payments. Download now and experience the future of payments!