Proven Expertise
Our team brings years of experience in the digital payments industry to provide reliable services.
<?php
declare(strict_types=1);
namespace Brick\Math\Internal;
use Brick\Math\Exception\RoundingNecessaryException;
use Brick\Math\RoundingMode;
/**
* Performs basic operations on arbitrary size integers.
*
* Unless otherwise specified, all parameters must be validated as non-empty strings of digits,
* without leading zero, and with an optional leading minus sign if the number is not zero.
*
* Any other parameter format will lead to undefined behaviour.
* All methods must return strings respecting this format, unless specified otherwise.
*
* @internal
*
* @psalm-immutable
*/
abstract class Calculator
{
/**
* The maximum exponent value allowed for the pow() method.
*/
public const MAX_POWER = 1000000;
/**
* The alphabet for converting from and to base 2 to 36, lowercase.
*/
public const ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz';
/**
* The Calculator instance in use.
*/
private static ?Calculator $instance = null;
/**
* Sets the Calculator instance to use.
*
* An instance is typically set only in unit tests: the autodetect is usually the best option.
*
* @param Calculator|null $calculator The calculator instance, or NULL to revert to autodetect.
*/
final public static function set(?Calculator $calculator) : void
{
self::$instance = $calculator;
}
/**
* Returns the Calculator instance to use.
*
* If none has been explicitly set, the fastest available implementation will be returned.
*
* @psalm-pure
* @psalm-suppress ImpureStaticProperty
*/
final public static function get() : Calculator
{
if (self::$instance === null) {
/** @psalm-suppress ImpureMethodCall */
self::$instance = self::detect();
}
return self::$instance;
}
/**
* Returns the fastest available Calculator implementation.
*
* @codeCoverageIgnore
*/
private static function detect() : Calculator
{
if (\extension_loaded('gmp')) {
return new Calculator\GmpCalculator();
}
if (\extension_loaded('bcmath')) {
return new Calculator\BcMathCalculator();
}
return new Calculator\NativeCalculator();
}
/**
* Extracts the sign & digits of the operands.
*
* @return array{bool, bool, string, string} Whether $a and $b are negative, followed by their digits.
*/
final protected function init(string $a, string $b) : array
{
return [
$aNeg = ($a[0] === '-'),
$bNeg = ($b[0] === '-'),
$aNeg ? \substr($a, 1) : $a,
$bNeg ? \substr($b, 1) : $b,
];
}
/**
* Returns the absolute value of a number.
*/
final public function abs(string $n) : string
{
return ($n[0] === '-') ? \substr($n, 1) : $n;
}
/**
* Negates a number.
*/
final public function neg(string $n) : string
{
if ($n === '0') {
return '0';
}
if ($n[0] === '-') {
return \substr($n, 1);
}
return '-' . $n;
}
/**
* Compares two numbers.
*
* @return int [-1, 0, 1] If the first number is less than, equal to, or greater than the second number.
*/
final public function cmp(string $a, string $b) : int
{
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
if ($aNeg && ! $bNeg) {
return -1;
}
if ($bNeg && ! $aNeg) {
return 1;
}
$aLen = \strlen($aDig);
$bLen = \strlen($bDig);
if ($aLen < $bLen) {
$result = -1;
} elseif ($aLen > $bLen) {
$result = 1;
} else {
$result = $aDig <=> $bDig;
}
return $aNeg ? -$result : $result;
}
/**
* Adds two numbers.
*/
abstract public function add(string $a, string $b) : string;
/**
* Subtracts two numbers.
*/
abstract public function sub(string $a, string $b) : string;
/**
* Multiplies two numbers.
*/
abstract public function mul(string $a, string $b) : string;
/**
* Returns the quotient of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return string The quotient.
*/
abstract public function divQ(string $a, string $b) : string;
/**
* Returns the remainder of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return string The remainder.
*/
abstract public function divR(string $a, string $b) : string;
/**
* Returns the quotient and remainder of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return array{string, string} An array containing the quotient and remainder.
*/
abstract public function divQR(string $a, string $b) : array;
/**
* Exponentiates a number.
*
* @param string $a The base number.
* @param int $e The exponent, validated as an integer between 0 and MAX_POWER.
*
* @return string The power.
*/
abstract public function pow(string $a, int $e) : string;
/**
* @param string $b The modulus; must not be zero.
*/
public function mod(string $a, string $b) : string
{
return $this->divR($this->add($this->divR($a, $b), $b), $b);
}
/**
* Returns the modular multiplicative inverse of $x modulo $m.
*
* If $x has no multiplicative inverse mod m, this method must return null.
*
* This method can be overridden by the concrete implementation if the underlying library has built-in support.
*
* @param string $m The modulus; must not be negative or zero.
*/
public function modInverse(string $x, string $m) : ?string
{
if ($m === '1') {
return '0';
}
$modVal = $x;
if ($x[0] === '-' || ($this->cmp($this->abs($x), $m) >= 0)) {
$modVal = $this->mod($x, $m);
}
[$g, $x] = $this->gcdExtended($modVal, $m);
if ($g !== '1') {
return null;
}
return $this->mod($this->add($this->mod($x, $m), $m), $m);
}
/**
* Raises a number into power with modulo.
*
* @param string $base The base number; must be positive or zero.
* @param string $exp The exponent; must be positive or zero.
* @param string $mod The modulus; must be strictly positive.
*/
abstract public function modPow(string $base, string $exp, string $mod) : string;
/**
* Returns the greatest common divisor of the two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for GCD calculations.
*
* @return string The GCD, always positive, or zero if both arguments are zero.
*/
public function gcd(string $a, string $b) : string
{
if ($a === '0') {
return $this->abs($b);
}
if ($b === '0') {
return $this->abs($a);
}
return $this->gcd($b, $this->divR($a, $b));
}
/**
* @return array{string, string, string} GCD, X, Y
*/
private function gcdExtended(string $a, string $b) : array
{
if ($a === '0') {
return [$b, '0', '1'];
}
[$gcd, $x1, $y1] = $this->gcdExtended($this->mod($b, $a), $a);
$x = $this->sub($y1, $this->mul($this->divQ($b, $a), $x1));
$y = $x1;
return [$gcd, $x, $y];
}
/**
* Returns the square root of the given number, rounded down.
*
* The result is the largest x such that x² ≤ n.
* The input MUST NOT be negative.
*/
abstract public function sqrt(string $n) : string;
/**
* Converts a number from an arbitrary base.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for base conversion.
*
* @param string $number The number, positive or zero, non-empty, case-insensitively validated for the given base.
* @param int $base The base of the number, validated from 2 to 36.
*
* @return string The converted number, following the Calculator conventions.
*/
public function fromBase(string $number, int $base) : string
{
return $this->fromArbitraryBase(\strtolower($number), self::ALPHABET, $base);
}
/**
* Converts a number to an arbitrary base.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for base conversion.
*
* @param string $number The number to convert, following the Calculator conventions.
* @param int $base The base to convert to, validated from 2 to 36.
*
* @return string The converted number, lowercase.
*/
public function toBase(string $number, int $base) : string
{
$negative = ($number[0] === '-');
if ($negative) {
$number = \substr($number, 1);
}
$number = $this->toArbitraryBase($number, self::ALPHABET, $base);
if ($negative) {
return '-' . $number;
}
return $number;
}
/**
* Converts a non-negative number in an arbitrary base using a custom alphabet, to base 10.
*
* @param string $number The number to convert, validated as a non-empty string,
* containing only chars in the given alphabet/base.
* @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum.
* @param int $base The base of the number, validated from 2 to alphabet length.
*
* @return string The number in base 10, following the Calculator conventions.
*/
final public function fromArbitraryBase(string $number, string $alphabet, int $base) : string
{
// remove leading "zeros"
$number = \ltrim($number, $alphabet[0]);
if ($number === '') {
return '0';
}
// optimize for "one"
if ($number === $alphabet[1]) {
return '1';
}
$result = '0';
$power = '1';
$base = (string) $base;
for ($i = \strlen($number) - 1; $i >= 0; $i--) {
$index = \strpos($alphabet, $number[$i]);
if ($index !== 0) {
$result = $this->add($result, ($index === 1)
? $power
: $this->mul($power, (string) $index)
);
}
if ($i !== 0) {
$power = $this->mul($power, $base);
}
}
return $result;
}
/**
* Converts a non-negative number to an arbitrary base using a custom alphabet.
*
* @param string $number The number to convert, positive or zero, following the Calculator conventions.
* @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum.
* @param int $base The base to convert to, validated from 2 to alphabet length.
*
* @return string The converted number in the given alphabet.
*/
final public function toArbitraryBase(string $number, string $alphabet, int $base) : string
{
if ($number === '0') {
return $alphabet[0];
}
$base = (string) $base;
$result = '';
while ($number !== '0') {
[$number, $remainder] = $this->divQR($number, $base);
$remainder = (int) $remainder;
$result .= $alphabet[$remainder];
}
return \strrev($result);
}
/**
* Performs a rounded division.
*
* Rounding is performed when the remainder of the division is not zero.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
* @param int $roundingMode The rounding mode.
*
* @throws \InvalidArgumentException If the rounding mode is invalid.
* @throws RoundingNecessaryException If RoundingMode::UNNECESSARY is provided but rounding is necessary.
*
* @psalm-suppress ImpureFunctionCall
*/
final public function divRound(string $a, string $b, int $roundingMode) : string
{
[$quotient, $remainder] = $this->divQR($a, $b);
$hasDiscardedFraction = ($remainder !== '0');
$isPositiveOrZero = ($a[0] === '-') === ($b[0] === '-');
$discardedFractionSign = function() use ($remainder, $b) : int {
$r = $this->abs($this->mul($remainder, '2'));
$b = $this->abs($b);
return $this->cmp($r, $b);
};
$increment = false;
switch ($roundingMode) {
case RoundingMode::UNNECESSARY:
if ($hasDiscardedFraction) {
throw RoundingNecessaryException::roundingNecessary();
}
break;
case RoundingMode::UP:
$increment = $hasDiscardedFraction;
break;
case RoundingMode::DOWN:
break;
case RoundingMode::CEILING:
$increment = $hasDiscardedFraction && $isPositiveOrZero;
break;
case RoundingMode::FLOOR:
$increment = $hasDiscardedFraction && ! $isPositiveOrZero;
break;
case RoundingMode::HALF_UP:
$increment = $discardedFractionSign() >= 0;
break;
case RoundingMode::HALF_DOWN:
$increment = $discardedFractionSign() > 0;
break;
case RoundingMode::HALF_CEILING:
$increment = $isPositiveOrZero ? $discardedFractionSign() >= 0 : $discardedFractionSign() > 0;
break;
case RoundingMode::HALF_FLOOR:
$increment = $isPositiveOrZero ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0;
break;
case RoundingMode::HALF_EVEN:
$lastDigit = (int) $quotient[-1];
$lastDigitIsEven = ($lastDigit % 2 === 0);
$increment = $lastDigitIsEven ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0;
break;
default:
throw new \InvalidArgumentException('Invalid rounding mode.');
}
if ($increment) {
return $this->add($quotient, $isPositiveOrZero ? '1' : '-1');
}
return $quotient;
}
/**
* Calculates bitwise AND of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*/
public function and(string $a, string $b) : string
{
return $this->bitwise('and', $a, $b);
}
/**
* Calculates bitwise OR of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*/
public function or(string $a, string $b) : string
{
return $this->bitwise('or', $a, $b);
}
/**
* Calculates bitwise XOR of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*/
public function xor(string $a, string $b) : string
{
return $this->bitwise('xor', $a, $b);
}
/**
* Performs a bitwise operation on a decimal number.
*
* @param 'and'|'or'|'xor' $operator The operator to use.
* @param string $a The left operand.
* @param string $b The right operand.
*/
private function bitwise(string $operator, string $a, string $b) : string
{
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$aBin = $this->toBinary($aDig);
$bBin = $this->toBinary($bDig);
$aLen = \strlen($aBin);
$bLen = \strlen($bBin);
if ($aLen > $bLen) {
$bBin = \str_repeat("\x00", $aLen - $bLen) . $bBin;
} elseif ($bLen > $aLen) {
$aBin = \str_repeat("\x00", $bLen - $aLen) . $aBin;
}
if ($aNeg) {
$aBin = $this->twosComplement($aBin);
}
if ($bNeg) {
$bBin = $this->twosComplement($bBin);
}
switch ($operator) {
case 'and':
$value = $aBin & $bBin;
$negative = ($aNeg and $bNeg);
break;
case 'or':
$value = $aBin | $bBin;
$negative = ($aNeg or $bNeg);
break;
case 'xor':
$value = $aBin ^ $bBin;
$negative = ($aNeg xor $bNeg);
break;
// @codeCoverageIgnoreStart
default:
throw new \InvalidArgumentException('Invalid bitwise operator.');
// @codeCoverageIgnoreEnd
}
if ($negative) {
$value = $this->twosComplement($value);
}
$result = $this->toDecimal($value);
return $negative ? $this->neg($result) : $result;
}
/**
* @param string $number A positive, binary number.
*/
private function twosComplement(string $number) : string
{
$xor = \str_repeat("\xff", \strlen($number));
$number ^= $xor;
for ($i = \strlen($number) - 1; $i >= 0; $i--) {
$byte = \ord($number[$i]);
if (++$byte !== 256) {
$number[$i] = \chr($byte);
break;
}
$number[$i] = "\x00";
if ($i === 0) {
$number = "\x01" . $number;
}
}
return $number;
}
/**
* Converts a decimal number to a binary string.
*
* @param string $number The number to convert, positive or zero, only digits.
*/
private function toBinary(string $number) : string
{
$result = '';
while ($number !== '0') {
[$number, $remainder] = $this->divQR($number, '256');
$result .= \chr((int) $remainder);
}
return \strrev($result);
}
/**
* Returns the positive decimal representation of a binary number.
*
* @param string $bytes The bytes representing the number.
*/
private function toDecimal(string $bytes) : string
{
$result = '0';
$power = '1';
for ($i = \strlen($bytes) - 1; $i >= 0; $i--) {
$index = \ord($bytes[$i]);
if ($index !== 0) {
$result = $this->add($result, ($index === 1)
? $power
: $this->mul($power, (string) $index)
);
}
if ($i !== 0) {
$power = $this->mul($power, '256');
}
}
return $result;
}
}
How it Works
Getting started with NFC Pay is simple and quick. Register your account, add your cards, and you're ready to make payments in no time. Whether you're paying at a store, sending money to a friend, or managing your merchant transactions, NFC Pay makes it easy and secure.
Download the NFC Pay app and sign up with your email or phone number. Complete the registration process by verifying your identity, and set up your secure PIN to protect your account.
Link your debit or credit cards to your NFC Pay wallet. Simply scan your card or enter the details manually, and you’re set to load funds, shop, and pay with ease.
To pay, simply tap your phone or scan the QR code at checkout. You can also transfer money to other users with a few taps. Enjoy fast, contactless payments with top-notch security.
Security System
NFC Pay prioritizes your security with advanced features that safeguard every transaction. From SMS or email verification to end-to-end encryption, we've implemented robust measures to ensure your data is always protected. Our security systems are designed to prevent unauthorized access and provide you with a safe and reliable payment experience.
Receive instant alerts for every transaction to keep track of your account activities.
Verify your identity through our Know Your Customer process to prevent fraud and enhance security.
Dramatically supply transparent backward deliverables before caward comp internal or "organic" sources.
All your data and transactions are encrypted, ensuring that your sensitive information remains private.
Monitor unusual activity patterns to detect and prevent suspicious behavior in real-time.
Why Choice Us
With NFC Pay, you get a trusted platform backed by proven expertise and a commitment to quality. We put our customers first, offering innovative solutions tailored to your needs, ensuring every transaction is secure, swift, and seamless.
Our team brings years of experience in the digital payments industry to provide reliable services.
We prioritize excellence, ensuring that every aspect of our platform meets the highest standards.
Your needs drive our solutions, and we are dedicated to delivering a superior user experience.
We continuously evolve, integrating the latest technologies to enhance your payment experience.
Testimonial Section
Hear from our users who trust NFC Pay for their everyday transactions. Our commitment to security, ease of use, and exceptional service shines through in their experiences. See why our clients choose NFC Pay for their payment needs and how it has transformed the way they manage their finances.
App Section
Unlock the full potential of NFC Pay by downloading our app, designed to bring secure, swift, and smart transactions to your fingertips. Whether you're paying at a store, transferring money to friends, or managing your business payments, the NFC Pay app makes it effortless. Available on both iOS and Android, it's your all-in-one solution for convenient and reliable digital payments. Download now and experience the future of payments!