/home/kueuepay/www/vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Shared/Trend/BestFit.php
<?php

namespace PhpOffice\PhpSpreadsheet\Shared\Trend;

abstract class BestFit
{
    /**
     * Indicator flag for a calculation error.
     *
     * @var bool
     */
    protected $error = false;

    /**
     * Algorithm type to use for best-fit.
     *
     * @var string
     */
    protected $bestFitType = 'undetermined';

    /**
     * Number of entries in the sets of x- and y-value arrays.
     *
     * @var int
     */
    protected $valueCount = 0;

    /**
     * X-value dataseries of values.
     *
     * @var float[]
     */
    protected $xValues = [];

    /**
     * Y-value dataseries of values.
     *
     * @var float[]
     */
    protected $yValues = [];

    /**
     * Flag indicating whether values should be adjusted to Y=0.
     *
     * @var bool
     */
    protected $adjustToZero = false;

    /**
     * Y-value series of best-fit values.
     *
     * @var float[]
     */
    protected $yBestFitValues = [];

    /** @var float */
    protected $goodnessOfFit = 1;

    /** @var float */
    protected $stdevOfResiduals = 0;

    /** @var float */
    protected $covariance = 0;

    /** @var float */
    protected $correlation = 0;

    /** @var float */
    protected $SSRegression = 0;

    /** @var float */
    protected $SSResiduals = 0;

    /** @var float */
    protected $DFResiduals = 0;

    /** @var float */
    protected $f = 0;

    /** @var float */
    protected $slope = 0;

    /** @var float */
    protected $slopeSE = 0;

    /** @var float */
    protected $intersect = 0;

    /** @var float */
    protected $intersectSE = 0;

    /** @var float */
    protected $xOffset = 0;

    /** @var float */
    protected $yOffset = 0;

    /** @return bool */
    public function getError()
    {
        return $this->error;
    }

    /** @return string */
    public function getBestFitType()
    {
        return $this->bestFitType;
    }

    /**
     * Return the Y-Value for a specified value of X.
     *
     * @param float $xValue X-Value
     *
     * @return float Y-Value
     */
    abstract public function getValueOfYForX($xValue);

    /**
     * Return the X-Value for a specified value of Y.
     *
     * @param float $yValue Y-Value
     *
     * @return float X-Value
     */
    abstract public function getValueOfXForY($yValue);

    /**
     * Return the original set of X-Values.
     *
     * @return float[] X-Values
     */
    public function getXValues()
    {
        return $this->xValues;
    }

    /**
     * Return the Equation of the best-fit line.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return string
     */
    abstract public function getEquation($dp = 0);

    /**
     * Return the Slope of the line.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getSlope($dp = 0)
    {
        if ($dp != 0) {
            return round($this->slope, $dp);
        }

        return $this->slope;
    }

    /**
     * Return the standard error of the Slope.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getSlopeSE($dp = 0)
    {
        if ($dp != 0) {
            return round($this->slopeSE, $dp);
        }

        return $this->slopeSE;
    }

    /**
     * Return the Value of X where it intersects Y = 0.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getIntersect($dp = 0)
    {
        if ($dp != 0) {
            return round($this->intersect, $dp);
        }

        return $this->intersect;
    }

    /**
     * Return the standard error of the Intersect.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getIntersectSE($dp = 0)
    {
        if ($dp != 0) {
            return round($this->intersectSE, $dp);
        }

        return $this->intersectSE;
    }

    /**
     * Return the goodness of fit for this regression.
     *
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getGoodnessOfFit($dp = 0)
    {
        if ($dp != 0) {
            return round($this->goodnessOfFit, $dp);
        }

        return $this->goodnessOfFit;
    }

    /**
     * Return the goodness of fit for this regression.
     *
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getGoodnessOfFitPercent($dp = 0)
    {
        if ($dp != 0) {
            return round($this->goodnessOfFit * 100, $dp);
        }

        return $this->goodnessOfFit * 100;
    }

    /**
     * Return the standard deviation of the residuals for this regression.
     *
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getStdevOfResiduals($dp = 0)
    {
        if ($dp != 0) {
            return round($this->stdevOfResiduals, $dp);
        }

        return $this->stdevOfResiduals;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getSSRegression($dp = 0)
    {
        if ($dp != 0) {
            return round($this->SSRegression, $dp);
        }

        return $this->SSRegression;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getSSResiduals($dp = 0)
    {
        if ($dp != 0) {
            return round($this->SSResiduals, $dp);
        }

        return $this->SSResiduals;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getDFResiduals($dp = 0)
    {
        if ($dp != 0) {
            return round($this->DFResiduals, $dp);
        }

        return $this->DFResiduals;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getF($dp = 0)
    {
        if ($dp != 0) {
            return round($this->f, $dp);
        }

        return $this->f;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getCovariance($dp = 0)
    {
        if ($dp != 0) {
            return round($this->covariance, $dp);
        }

        return $this->covariance;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getCorrelation($dp = 0)
    {
        if ($dp != 0) {
            return round($this->correlation, $dp);
        }

        return $this->correlation;
    }

    /**
     * @return float[]
     */
    public function getYBestFitValues()
    {
        return $this->yBestFitValues;
    }

    /** @var mixed */
    private static $scrutinizerZeroPointZero = 0.0;

    /**
     * @param mixed $x
     * @param mixed $y
     */
    private static function scrutinizerLooseCompare($x, $y): bool
    {
        return $x == $y;
    }

    /**
     * @param float $sumX
     * @param float $sumY
     * @param float $sumX2
     * @param float $sumY2
     * @param float $sumXY
     * @param float $meanX
     * @param float $meanY
     * @param bool|int $const
     */
    protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void
    {
        $SSres = $SScov = $SStot = $SSsex = 0.0;
        foreach ($this->xValues as $xKey => $xValue) {
            $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);

            $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
            if ($const === true) {
                $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
            } else {
                $SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
            }
            $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
            if ($const === true) {
                $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
            } else {
                $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
            }
        }

        $this->SSResiduals = $SSres;
        $this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0);

        if ($this->DFResiduals == 0.0) {
            $this->stdevOfResiduals = 0.0;
        } else {
            $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
        }
        // Scrutinizer thinks $SSres == $SStot is always true. It is wrong.
        if ($SStot == self::$scrutinizerZeroPointZero || self::scrutinizerLooseCompare($SSres, $SStot)) {
            $this->goodnessOfFit = 1;
        } else {
            $this->goodnessOfFit = 1 - ($SSres / $SStot);
        }

        $this->SSRegression = $this->goodnessOfFit * $SStot;
        $this->covariance = $SScov / $this->valueCount;
        $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));
        $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
        $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
        if ($this->SSResiduals != 0.0) {
            if ($this->DFResiduals == 0.0) {
                $this->f = 0.0;
            } else {
                $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
            }
        } else {
            if ($this->DFResiduals == 0.0) {
                $this->f = 0.0;
            } else {
                $this->f = $this->SSRegression / $this->DFResiduals;
            }
        }
    }

    /** @return float|int */
    private function sumSquares(array $values)
    {
        return array_sum(
            array_map(
                function ($value) {
                    return $value ** 2;
                },
                $values
            )
        );
    }

    /**
     * @param float[] $yValues
     * @param float[] $xValues
     */
    protected function leastSquareFit(array $yValues, array $xValues, bool $const): void
    {
        // calculate sums
        $sumValuesX = array_sum($xValues);
        $sumValuesY = array_sum($yValues);
        $meanValueX = $sumValuesX / $this->valueCount;
        $meanValueY = $sumValuesY / $this->valueCount;
        $sumSquaresX = $this->sumSquares($xValues);
        $sumSquaresY = $this->sumSquares($yValues);
        $mBase = $mDivisor = 0.0;
        $xy_sum = 0.0;
        for ($i = 0; $i < $this->valueCount; ++$i) {
            $xy_sum += $xValues[$i] * $yValues[$i];

            if ($const === true) {
                $mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY);
                $mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX);
            } else {
                $mBase += $xValues[$i] * $yValues[$i];
                $mDivisor += $xValues[$i] * $xValues[$i];
            }
        }

        // calculate slope
        $this->slope = $mBase / $mDivisor;

        // calculate intersect
        $this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0;

        $this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const);
    }

    /**
     * Define the regression.
     *
     * @param float[] $yValues The set of Y-values for this regression
     * @param float[] $xValues The set of X-values for this regression
     */
    public function __construct($yValues, $xValues = [])
    {
        //    Calculate number of points
        $yValueCount = count($yValues);
        $xValueCount = count($xValues);

        //    Define X Values if necessary
        if ($xValueCount === 0) {
            $xValues = range(1, $yValueCount);
        } elseif ($yValueCount !== $xValueCount) {
            //    Ensure both arrays of points are the same size
            $this->error = true;
        }

        $this->valueCount = $yValueCount;
        $this->xValues = $xValues;
        $this->yValues = $yValues;
    }
}
Service
top

Our Services: Streamlining Your Payment Experience with Excellence

Discover how our services are designed to enhance your NFC Pay experience with convenience, security, and innovative solutions. From managing transactions to secure payments, we are dedicated to providing seamless support every step of the way.

Secure Card Storage

Easily save your credit and debit card details within our app for quick and secure transactions. This feature ensures that your payment information is protected with advanced encryption and can be used for future purchases with just a tap.

Effortless Money Transfers

Transfer funds quickly and securely between users with our streamlined money transfer service. Simply select the recipient, enter the amount, and authorize the transaction for instant, hassle-free transfers.

Merchant Account Setup

Activate your merchant account effortlessly to start receiving payments. Our intuitive setup process ensures that you can begin accepting transactions smoothly, helping your business thrive with minimal setup time.

Real-Time Transaction Tracking

Keep track of all your transactions in real time through our app. Monitor payment statuses, view transaction history, and manage your account efficiently, ensuring complete control over your financial activities.

Customer Support

Our dedicated support team is available to assist you with any queries or issues. Whether you need help with setting up your account or resolving transaction-related questions, we’re here to provide prompt and reliable assistance.