/home/kueuepay/public_html/vendor/phpseclib/phpseclib/phpseclib/Crypt/EC/BaseCurves/Binary.php
<?php

/**
 * Curves over y^2 + x*y = x^3 + a*x^2 + b
 *
 * These are curves used in SEC 2 over prime fields: http://www.secg.org/SEC2-Ver-1.0.pdf
 * The curve is a weierstrass curve with a[3] and a[2] set to 0.
 *
 * Uses Jacobian Coordinates for speed if able:
 *
 * https://en.wikipedia.org/wiki/Jacobian_curve
 * https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <terrafrost@php.net>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 * @link      http://pear.php.net/package/Math_BigInteger
 */

namespace phpseclib3\Crypt\EC\BaseCurves;

use phpseclib3\Math\BigInteger;
use phpseclib3\Math\BinaryField;
use phpseclib3\Math\BinaryField\Integer as BinaryInteger;

/**
 * Curves over y^2 + x*y = x^3 + a*x^2 + b
 *
 * @author  Jim Wigginton <terrafrost@php.net>
 */
class Binary extends Base
{
    /**
     * Binary Field Integer factory
     *
     * @var \phpseclib3\Math\BinaryField
     */
    protected $factory;

    /**
     * Cofficient for x^1
     *
     * @var object
     */
    protected $a;

    /**
     * Cofficient for x^0
     *
     * @var object
     */
    protected $b;

    /**
     * Base Point
     *
     * @var object
     */
    protected $p;

    /**
     * The number one over the specified finite field
     *
     * @var object
     */
    protected $one;

    /**
     * The modulo
     *
     * @var BigInteger
     */
    protected $modulo;

    /**
     * The Order
     *
     * @var BigInteger
     */
    protected $order;

    /**
     * Sets the modulo
     */
    public function setModulo(...$modulo)
    {
        $this->modulo = $modulo;
        $this->factory = new BinaryField(...$modulo);

        $this->one = $this->factory->newInteger("\1");
    }

    /**
     * Set coefficients a and b
     *
     * @param string $a
     * @param string $b
     */
    public function setCoefficients($a, $b)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }
        $this->a = $this->factory->newInteger(pack('H*', $a));
        $this->b = $this->factory->newInteger(pack('H*', $b));
    }

    /**
     * Set x and y coordinates for the base point
     *
     * @param string|BinaryInteger $x
     * @param string|BinaryInteger $y
     */
    public function setBasePoint($x, $y)
    {
        switch (true) {
            case !is_string($x) && !$x instanceof BinaryInteger:
                throw new \UnexpectedValueException('Argument 1 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer');
            case !is_string($y) && !$y instanceof BinaryInteger:
                throw new \UnexpectedValueException('Argument 2 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer');
        }
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }
        $this->p = [
            is_string($x) ? $this->factory->newInteger(pack('H*', $x)) : $x,
            is_string($y) ? $this->factory->newInteger(pack('H*', $y)) : $y
        ];
    }

    /**
     * Retrieve the base point as an array
     *
     * @return array
     */
    public function getBasePoint()
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }
        /*
        if (!isset($this->p)) {
            throw new \RuntimeException('setBasePoint needs to be called before this method');
        }
        */
        return $this->p;
    }

    /**
     * Adds two points on the curve
     *
     * @return FiniteField[]
     */
    public function addPoint(array $p, array $q)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p) || !count($q)) {
            if (count($q)) {
                return $q;
            }
            if (count($p)) {
                return $p;
            }
            return [];
        }

        if (!isset($p[2]) || !isset($q[2])) {
            throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
        }

        if ($p[0]->equals($q[0])) {
            return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
        }

        // formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html

        list($x1, $y1, $z1) = $p;
        list($x2, $y2, $z2) = $q;

        $o1 = $z1->multiply($z1);
        $b = $x2->multiply($o1);

        if ($z2->equals($this->one)) {
            $d = $y2->multiply($o1)->multiply($z1);
            $e = $x1->add($b);
            $f = $y1->add($d);
            $z3 = $e->multiply($z1);
            $h = $f->multiply($x2)->add($z3->multiply($y2));
            $i = $f->add($z3);
            $g = $z3->multiply($z3);
            $p1 = $this->a->multiply($g);
            $p2 = $f->multiply($i);
            $p3 = $e->multiply($e)->multiply($e);
            $x3 = $p1->add($p2)->add($p3);
            $y3 = $i->multiply($x3)->add($g->multiply($h));

            return [$x3, $y3, $z3];
        }

        $o2 = $z2->multiply($z2);
        $a = $x1->multiply($o2);
        $c = $y1->multiply($o2)->multiply($z2);
        $d = $y2->multiply($o1)->multiply($z1);
        $e = $a->add($b);
        $f = $c->add($d);
        $g = $e->multiply($z1);
        $h = $f->multiply($x2)->add($g->multiply($y2));
        $z3 = $g->multiply($z2);
        $i = $f->add($z3);
        $p1 = $this->a->multiply($z3->multiply($z3));
        $p2 = $f->multiply($i);
        $p3 = $e->multiply($e)->multiply($e);
        $x3 = $p1->add($p2)->add($p3);
        $y3 = $i->multiply($x3)->add($g->multiply($g)->multiply($h));

        return [$x3, $y3, $z3];
    }

    /**
     * Doubles a point on a curve
     *
     * @return FiniteField[]
     */
    public function doublePoint(array $p)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p)) {
            return [];
        }

        if (!isset($p[2])) {
            throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
        }

        // formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html

        list($x1, $y1, $z1) = $p;

        $a = $x1->multiply($x1);
        $b = $a->multiply($a);

        if ($z1->equals($this->one)) {
            $x3 = $b->add($this->b);
            $z3 = clone $x1;
            $p1 = $a->add($y1)->add($z3)->multiply($this->b);
            $p2 = $a->add($y1)->multiply($b);
            $y3 = $p1->add($p2);

            return [$x3, $y3, $z3];
        }

        $c = $z1->multiply($z1);
        $d = $c->multiply($c);
        $x3 = $b->add($this->b->multiply($d->multiply($d)));
        $z3 = $x1->multiply($c);
        $p1 = $b->multiply($z3);
        $p2 = $a->add($y1->multiply($z1))->add($z3)->multiply($x3);
        $y3 = $p1->add($p2);

        return [$x3, $y3, $z3];
    }

    /**
     * Returns the X coordinate and the derived Y coordinate
     *
     * Not supported because it is covered by patents.
     * Quoting https://www.openssl.org/docs/man1.1.0/apps/ecparam.html ,
     *
     * "Due to patent issues the compressed option is disabled by default for binary curves
     *  and can be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at
     *  compile time."
     *
     * @return array
     */
    public function derivePoint($m)
    {
        throw new \RuntimeException('Point compression on binary finite field elliptic curves is not supported');
    }

    /**
     * Tests whether or not the x / y values satisfy the equation
     *
     * @return boolean
     */
    public function verifyPoint(array $p)
    {
        list($x, $y) = $p;
        $lhs = $y->multiply($y);
        $lhs = $lhs->add($x->multiply($y));
        $x2 = $x->multiply($x);
        $x3 = $x2->multiply($x);
        $rhs = $x3->add($this->a->multiply($x2))->add($this->b);

        return $lhs->equals($rhs);
    }

    /**
     * Returns the modulo
     *
     * @return \phpseclib3\Math\BigInteger
     */
    public function getModulo()
    {
        return $this->modulo;
    }

    /**
     * Returns the a coefficient
     *
     * @return \phpseclib3\Math\PrimeField\Integer
     */
    public function getA()
    {
        return $this->a;
    }

    /**
     * Returns the a coefficient
     *
     * @return \phpseclib3\Math\PrimeField\Integer
     */
    public function getB()
    {
        return $this->b;
    }

    /**
     * Returns the affine point
     *
     * A Jacobian Coordinate is of the form (x, y, z).
     * To convert a Jacobian Coordinate to an Affine Point
     * you do (x / z^2, y / z^3)
     *
     * @return \phpseclib3\Math\PrimeField\Integer[]
     */
    public function convertToAffine(array $p)
    {
        if (!isset($p[2])) {
            return $p;
        }
        list($x, $y, $z) = $p;
        $z = $this->one->divide($z);
        $z2 = $z->multiply($z);
        return [
            $x->multiply($z2),
            $y->multiply($z2)->multiply($z)
        ];
    }

    /**
     * Converts an affine point to a jacobian coordinate
     *
     * @return \phpseclib3\Math\PrimeField\Integer[]
     */
    public function convertToInternal(array $p)
    {
        if (isset($p[2])) {
            return $p;
        }

        $p[2] = clone $this->one;
        $p['fresh'] = true;
        return $p;
    }
}
Save Card
top

Save Your Card for Quick and Easy Future Payments Online

Simplify your payment experience by securely saving your card on our platform. After your initial transaction, you can choose to store your card details safely for future use. This feature eliminates the need to re-enter your payment information each time, making checkouts faster while keeping your data secure with advanced encryption and robust security measures.

  • Navigate to the “Save Card” section.
  • Click on “Add Card.”
  • Choose your preferred setup method.
  • Your card is now saved for future payments.
img