/home/kueuepay/public_html/vendor/phpseclib/phpseclib/phpseclib/Crypt/EC/BaseCurves/Prime.php
<?php
/**
* Curves over y^2 = x^3 + a*x + b
*
* These are curves used in SEC 2 over prime fields: http://www.secg.org/SEC2-Ver-1.0.pdf
* The curve is a weierstrass curve with a[1], a[3] and a[2] set to 0.
*
* Uses Jacobian Coordinates for speed if able:
*
* https://en.wikipedia.org/wiki/Jacobian_curve
* https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Crypt\EC\BaseCurves;
use phpseclib3\Common\Functions\Strings;
use phpseclib3\Math\BigInteger;
use phpseclib3\Math\Common\FiniteField\Integer;
use phpseclib3\Math\PrimeField;
use phpseclib3\Math\PrimeField\Integer as PrimeInteger;
/**
* Curves over y^2 = x^3 + a*x + b
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class Prime extends Base
{
/**
* Prime Field Integer factory
*
* @var \phpseclib3\Math\PrimeFields
*/
protected $factory;
/**
* Cofficient for x^1
*
* @var object
*/
protected $a;
/**
* Cofficient for x^0
*
* @var object
*/
protected $b;
/**
* Base Point
*
* @var object
*/
protected $p;
/**
* The number one over the specified finite field
*
* @var object
*/
protected $one;
/**
* The number two over the specified finite field
*
* @var object
*/
protected $two;
/**
* The number three over the specified finite field
*
* @var object
*/
protected $three;
/**
* The number four over the specified finite field
*
* @var object
*/
protected $four;
/**
* The number eight over the specified finite field
*
* @var object
*/
protected $eight;
/**
* The modulo
*
* @var BigInteger
*/
protected $modulo;
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Sets the modulo
*/
public function setModulo(BigInteger $modulo)
{
$this->modulo = $modulo;
$this->factory = new PrimeField($modulo);
$this->two = $this->factory->newInteger(new BigInteger(2));
$this->three = $this->factory->newInteger(new BigInteger(3));
// used by jacobian coordinates
$this->one = $this->factory->newInteger(new BigInteger(1));
$this->four = $this->factory->newInteger(new BigInteger(4));
$this->eight = $this->factory->newInteger(new BigInteger(8));
}
/**
* Set coefficients a and b
*/
public function setCoefficients(BigInteger $a, BigInteger $b)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->a = $this->factory->newInteger($a);
$this->b = $this->factory->newInteger($b);
}
/**
* Set x and y coordinates for the base point
*
* @param BigInteger|PrimeInteger $x
* @param BigInteger|PrimeInteger $y
* @return PrimeInteger[]
*/
public function setBasePoint($x, $y)
{
switch (true) {
case !$x instanceof BigInteger && !$x instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 1 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
case !$y instanceof BigInteger && !$y instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 2 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
}
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->p = [
$x instanceof BigInteger ? $this->factory->newInteger($x) : $x,
$y instanceof BigInteger ? $this->factory->newInteger($y) : $y
];
}
/**
* Retrieve the base point as an array
*
* @return array
*/
public function getBasePoint()
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
/*
if (!isset($this->p)) {
throw new \RuntimeException('setBasePoint needs to be called before this method');
}
*/
return $this->p;
}
/**
* Adds two "fresh" jacobian form on the curve
*
* @return FiniteField[]
*/
protected function jacobianAddPointMixedXY(array $p, array $q)
{
list($u1, $s1) = $p;
list($u2, $s2) = $q;
if ($u1->equals($u2)) {
if (!$s1->equals($s2)) {
return [];
} else {
return $this->doublePoint($p);
}
}
$h = $u2->subtract($u1);
$r = $s2->subtract($s1);
$h2 = $h->multiply($h);
$h3 = $h2->multiply($h);
$v = $u1->multiply($h2);
$x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
$y3 = $r->multiply(
$v->subtract($x3)
)->subtract(
$s1->multiply($h3)
);
return [$x3, $y3, $h];
}
/**
* Adds one "fresh" jacobian form on the curve
*
* The second parameter should be the "fresh" one
*
* @return FiniteField[]
*/
protected function jacobianAddPointMixedX(array $p, array $q)
{
list($u1, $s1, $z1) = $p;
list($x2, $y2) = $q;
$z12 = $z1->multiply($z1);
$u2 = $x2->multiply($z12);
$s2 = $y2->multiply($z12->multiply($z1));
if ($u1->equals($u2)) {
if (!$s1->equals($s2)) {
return [];
} else {
return $this->doublePoint($p);
}
}
$h = $u2->subtract($u1);
$r = $s2->subtract($s1);
$h2 = $h->multiply($h);
$h3 = $h2->multiply($h);
$v = $u1->multiply($h2);
$x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
$y3 = $r->multiply(
$v->subtract($x3)
)->subtract(
$s1->multiply($h3)
);
$z3 = $h->multiply($z1);
return [$x3, $y3, $z3];
}
/**
* Adds two jacobian coordinates on the curve
*
* @return FiniteField[]
*/
protected function jacobianAddPoint(array $p, array $q)
{
list($x1, $y1, $z1) = $p;
list($x2, $y2, $z2) = $q;
$z12 = $z1->multiply($z1);
$z22 = $z2->multiply($z2);
$u1 = $x1->multiply($z22);
$u2 = $x2->multiply($z12);
$s1 = $y1->multiply($z22->multiply($z2));
$s2 = $y2->multiply($z12->multiply($z1));
if ($u1->equals($u2)) {
if (!$s1->equals($s2)) {
return [];
} else {
return $this->doublePoint($p);
}
}
$h = $u2->subtract($u1);
$r = $s2->subtract($s1);
$h2 = $h->multiply($h);
$h3 = $h2->multiply($h);
$v = $u1->multiply($h2);
$x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
$y3 = $r->multiply(
$v->subtract($x3)
)->subtract(
$s1->multiply($h3)
);
$z3 = $h->multiply($z1)->multiply($z2);
return [$x3, $y3, $z3];
}
/**
* Adds two points on the curve
*
* @return FiniteField[]
*/
public function addPoint(array $p, array $q)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
if (count($q)) {
return $q;
}
if (count($p)) {
return $p;
}
return [];
}
// use jacobian coordinates
if (isset($p[2]) && isset($q[2])) {
if (isset($p['fresh']) && isset($q['fresh'])) {
return $this->jacobianAddPointMixedXY($p, $q);
}
if (isset($p['fresh'])) {
return $this->jacobianAddPointMixedX($q, $p);
}
if (isset($q['fresh'])) {
return $this->jacobianAddPointMixedX($p, $q);
}
return $this->jacobianAddPoint($p, $q);
}
if (isset($p[2]) || isset($q[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to Jacobi coordinates or vice versa');
}
if ($p[0]->equals($q[0])) {
if (!$p[1]->equals($q[1])) {
return [];
} else { // eg. doublePoint
list($numerator, $denominator) = $this->doublePointHelper($p);
}
} else {
$numerator = $q[1]->subtract($p[1]);
$denominator = $q[0]->subtract($p[0]);
}
$slope = $numerator->divide($denominator);
$x = $slope->multiply($slope)->subtract($p[0])->subtract($q[0]);
$y = $slope->multiply($p[0]->subtract($x))->subtract($p[1]);
return [$x, $y];
}
/**
* Returns the numerator and denominator of the slope
*
* @return FiniteField[]
*/
protected function doublePointHelper(array $p)
{
$numerator = $this->three->multiply($p[0])->multiply($p[0])->add($this->a);
$denominator = $this->two->multiply($p[1]);
return [$numerator, $denominator];
}
/**
* Doubles a jacobian coordinate on the curve
*
* @return FiniteField[]
*/
protected function jacobianDoublePoint(array $p)
{
list($x, $y, $z) = $p;
$x2 = $x->multiply($x);
$y2 = $y->multiply($y);
$z2 = $z->multiply($z);
$s = $this->four->multiply($x)->multiply($y2);
$m1 = $this->three->multiply($x2);
$m2 = $this->a->multiply($z2->multiply($z2));
$m = $m1->add($m2);
$x1 = $m->multiply($m)->subtract($this->two->multiply($s));
$y1 = $m->multiply($s->subtract($x1))->subtract(
$this->eight->multiply($y2->multiply($y2))
);
$z1 = $this->two->multiply($y)->multiply($z);
return [$x1, $y1, $z1];
}
/**
* Doubles a "fresh" jacobian coordinate on the curve
*
* @return FiniteField[]
*/
protected function jacobianDoublePointMixed(array $p)
{
list($x, $y) = $p;
$x2 = $x->multiply($x);
$y2 = $y->multiply($y);
$s = $this->four->multiply($x)->multiply($y2);
$m1 = $this->three->multiply($x2);
$m = $m1->add($this->a);
$x1 = $m->multiply($m)->subtract($this->two->multiply($s));
$y1 = $m->multiply($s->subtract($x1))->subtract(
$this->eight->multiply($y2->multiply($y2))
);
$z1 = $this->two->multiply($y);
return [$x1, $y1, $z1];
}
/**
* Doubles a point on a curve
*
* @return FiniteField[]
*/
public function doublePoint(array $p)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p)) {
return [];
}
// use jacobian coordinates
if (isset($p[2])) {
if (isset($p['fresh'])) {
return $this->jacobianDoublePointMixed($p);
}
return $this->jacobianDoublePoint($p);
}
list($numerator, $denominator) = $this->doublePointHelper($p);
$slope = $numerator->divide($denominator);
$x = $slope->multiply($slope)->subtract($p[0])->subtract($p[0]);
$y = $slope->multiply($p[0]->subtract($x))->subtract($p[1]);
return [$x, $y];
}
/**
* Returns the X coordinate and the derived Y coordinate
*
* @return array
*/
public function derivePoint($m)
{
$y = ord(Strings::shift($m));
$x = new BigInteger($m, 256);
$xp = $this->convertInteger($x);
switch ($y) {
case 2:
$ypn = false;
break;
case 3:
$ypn = true;
break;
default:
throw new \RuntimeException('Coordinate not in recognized format');
}
$temp = $xp->multiply($this->a);
$temp = $xp->multiply($xp)->multiply($xp)->add($temp);
$temp = $temp->add($this->b);
$b = $temp->squareRoot();
if (!$b) {
throw new \RuntimeException('Unable to derive Y coordinate');
}
$bn = $b->isOdd();
$yp = $ypn == $bn ? $b : $b->negate();
return [$xp, $yp];
}
/**
* Tests whether or not the x / y values satisfy the equation
*
* @return boolean
*/
public function verifyPoint(array $p)
{
list($x, $y) = $p;
$lhs = $y->multiply($y);
$temp = $x->multiply($this->a);
$temp = $x->multiply($x)->multiply($x)->add($temp);
$rhs = $temp->add($this->b);
return $lhs->equals($rhs);
}
/**
* Returns the modulo
*
* @return \phpseclib3\Math\BigInteger
*/
public function getModulo()
{
return $this->modulo;
}
/**
* Returns the a coefficient
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function getA()
{
return $this->a;
}
/**
* Returns the a coefficient
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function getB()
{
return $this->b;
}
/**
* Multiply and Add Points
*
* Adapted from:
* https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/base.js#L125
*
* @return int[]
*/
public function multiplyAddPoints(array $points, array $scalars)
{
$length = count($points);
foreach ($points as &$point) {
$point = $this->convertToInternal($point);
}
$wnd = [$this->getNAFPoints($points[0], 7)];
$wndWidth = [isset($points[0]['nafwidth']) ? $points[0]['nafwidth'] : 7];
for ($i = 1; $i < $length; $i++) {
$wnd[] = $this->getNAFPoints($points[$i], 1);
$wndWidth[] = isset($points[$i]['nafwidth']) ? $points[$i]['nafwidth'] : 1;
}
$naf = [];
// comb all window NAFs
$max = 0;
for ($i = $length - 1; $i >= 1; $i -= 2) {
$a = $i - 1;
$b = $i;
if ($wndWidth[$a] != 1 || $wndWidth[$b] != 1) {
$naf[$a] = $scalars[$a]->getNAF($wndWidth[$a]);
$naf[$b] = $scalars[$b]->getNAF($wndWidth[$b]);
$max = max(count($naf[$a]), count($naf[$b]), $max);
continue;
}
$comb = [
$points[$a], // 1
null, // 3
null, // 5
$points[$b] // 7
];
$comb[1] = $this->addPoint($points[$a], $points[$b]);
$comb[2] = $this->addPoint($points[$a], $this->negatePoint($points[$b]));
$index = [
-3, /* -1 -1 */
-1, /* -1 0 */
-5, /* -1 1 */
-7, /* 0 -1 */
0, /* 0 -1 */
7, /* 0 1 */
5, /* 1 -1 */
1, /* 1 0 */
3 /* 1 1 */
];
$jsf = self::getJSFPoints($scalars[$a], $scalars[$b]);
$max = max(count($jsf[0]), $max);
if ($max > 0) {
$naf[$a] = array_fill(0, $max, 0);
$naf[$b] = array_fill(0, $max, 0);
} else {
$naf[$a] = [];
$naf[$b] = [];
}
for ($j = 0; $j < $max; $j++) {
$ja = isset($jsf[0][$j]) ? $jsf[0][$j] : 0;
$jb = isset($jsf[1][$j]) ? $jsf[1][$j] : 0;
$naf[$a][$j] = $index[3 * ($ja + 1) + $jb + 1];
$naf[$b][$j] = 0;
$wnd[$a] = $comb;
}
}
$acc = [];
$temp = [0, 0, 0, 0];
for ($i = $max; $i >= 0; $i--) {
$k = 0;
while ($i >= 0) {
$zero = true;
for ($j = 0; $j < $length; $j++) {
$temp[$j] = isset($naf[$j][$i]) ? $naf[$j][$i] : 0;
if ($temp[$j] != 0) {
$zero = false;
}
}
if (!$zero) {
break;
}
$k++;
$i--;
}
if ($i >= 0) {
$k++;
}
while ($k--) {
$acc = $this->doublePoint($acc);
}
if ($i < 0) {
break;
}
for ($j = 0; $j < $length; $j++) {
$z = $temp[$j];
$p = null;
if ($z == 0) {
continue;
}
$p = $z > 0 ?
$wnd[$j][($z - 1) >> 1] :
$this->negatePoint($wnd[$j][(-$z - 1) >> 1]);
$acc = $this->addPoint($acc, $p);
}
}
return $this->convertToAffine($acc);
}
/**
* Precomputes NAF points
*
* Adapted from:
* https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/base.js#L351
*
* @return int[]
*/
private function getNAFPoints(array $point, $wnd)
{
if (isset($point['naf'])) {
return $point['naf'];
}
$res = [$point];
$max = (1 << $wnd) - 1;
$dbl = $max == 1 ? null : $this->doublePoint($point);
for ($i = 1; $i < $max; $i++) {
$res[] = $this->addPoint($res[$i - 1], $dbl);
}
$point['naf'] = $res;
/*
$str = '';
foreach ($res as $re) {
$re[0] = bin2hex($re[0]->toBytes());
$re[1] = bin2hex($re[1]->toBytes());
$str.= " ['$re[0]', '$re[1]'],\r\n";
}
file_put_contents('temp.txt', $str);
exit;
*/
return $res;
}
/**
* Precomputes points in Joint Sparse Form
*
* Adapted from:
* https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/utils.js#L96
*
* @return int[]
*/
private static function getJSFPoints(Integer $k1, Integer $k2)
{
static $three;
if (!isset($three)) {
$three = new BigInteger(3);
}
$jsf = [[], []];
$k1 = $k1->toBigInteger();
$k2 = $k2->toBigInteger();
$d1 = 0;
$d2 = 0;
while ($k1->compare(new BigInteger(-$d1)) > 0 || $k2->compare(new BigInteger(-$d2)) > 0) {
// first phase
$m14 = $k1->testBit(0) + 2 * $k1->testBit(1);
$m14 += $d1;
$m14 &= 3;
$m24 = $k2->testBit(0) + 2 * $k2->testBit(1);
$m24 += $d2;
$m24 &= 3;
if ($m14 == 3) {
$m14 = -1;
}
if ($m24 == 3) {
$m24 = -1;
}
$u1 = 0;
if ($m14 & 1) { // if $m14 is odd
$m8 = $k1->testBit(0) + 2 * $k1->testBit(1) + 4 * $k1->testBit(2);
$m8 += $d1;
$m8 &= 7;
$u1 = ($m8 == 3 || $m8 == 5) && $m24 == 2 ? -$m14 : $m14;
}
$jsf[0][] = $u1;
$u2 = 0;
if ($m24 & 1) { // if $m24 is odd
$m8 = $k2->testBit(0) + 2 * $k2->testBit(1) + 4 * $k2->testBit(2);
$m8 += $d2;
$m8 &= 7;
$u2 = ($m8 == 3 || $m8 == 5) && $m14 == 2 ? -$m24 : $m24;
}
$jsf[1][] = $u2;
// second phase
if (2 * $d1 == $u1 + 1) {
$d1 = 1 - $d1;
}
if (2 * $d2 == $u2 + 1) {
$d2 = 1 - $d2;
}
$k1 = $k1->bitwise_rightShift(1);
$k2 = $k2->bitwise_rightShift(1);
}
return $jsf;
}
/**
* Returns the affine point
*
* A Jacobian Coordinate is of the form (x, y, z).
* To convert a Jacobian Coordinate to an Affine Point
* you do (x / z^2, y / z^3)
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToAffine(array $p)
{
if (!isset($p[2])) {
return $p;
}
list($x, $y, $z) = $p;
$z = $this->one->divide($z);
$z2 = $z->multiply($z);
return [
$x->multiply($z2),
$y->multiply($z2)->multiply($z)
];
}
/**
* Converts an affine point to a jacobian coordinate
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (isset($p[2])) {
return $p;
}
$p[2] = clone $this->one;
$p['fresh'] = true;
return $p;
}
}
Run Command [Bypass]
Run Command
User Login
top
In the digital age, privacy concerns have become increasingly paramount, prompting the European Union to enact the General Data Protection Regulation (GDPR) in 2018. Among its many provisions, GDPR sets strict guidelines for the collection and processing of personal data, including the use of cookies on websites. Privacy Policy
Allow
Decline