<?php
/**
* Ed25519
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
*/
namespace phpseclib3\Crypt\EC\Curves;
use phpseclib3\Crypt\EC\BaseCurves\TwistedEdwards;
use phpseclib3\Crypt\Hash;
use phpseclib3\Crypt\Random;
use phpseclib3\Math\BigInteger;
class Ed25519 extends TwistedEdwards
{
const HASH = 'sha512';
/*
Per https://tools.ietf.org/html/rfc8032#page-6 EdDSA has several parameters, one of which is b:
2. An integer b with 2^(b-1) > p. EdDSA public keys have exactly b
bits, and EdDSA signatures have exactly 2*b bits. b is
recommended to be a multiple of 8, so public key and signature
lengths are an integral number of octets.
SIZE corresponds to b
*/
const SIZE = 32;
public function __construct()
{
// 2^255 - 19
$this->setModulo(new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED', 16));
$this->setCoefficients(
// -1
new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC', 16), // a
// -121665/121666
new BigInteger('52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3', 16) // d
);
$this->setBasePoint(
new BigInteger('216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A', 16),
new BigInteger('6666666666666666666666666666666666666666666666666666666666666658', 16)
);
$this->setOrder(new BigInteger('1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED', 16));
// algorithm 14.47 from http://cacr.uwaterloo.ca/hac/about/chap14.pdf#page=16
/*
$this->setReduction(function($x) {
$parts = $x->bitwise_split(255);
$className = $this->className;
if (count($parts) > 2) {
list(, $r) = $x->divide($className::$modulo);
return $r;
}
$zero = new BigInteger();
$c = new BigInteger(19);
switch (count($parts)) {
case 2:
list($qi, $ri) = $parts;
break;
case 1:
$qi = $zero;
list($ri) = $parts;
break;
case 0:
return $zero;
}
$r = $ri;
while ($qi->compare($zero) > 0) {
$temp = $qi->multiply($c)->bitwise_split(255);
if (count($temp) == 2) {
list($qi, $ri) = $temp;
} else {
$qi = $zero;
list($ri) = $temp;
}
$r = $r->add($ri);
}
while ($r->compare($className::$modulo) > 0) {
$r = $r->subtract($className::$modulo);
}
return $r;
});
*/
}
/**
* Recover X from Y
*
* Implements steps 2-4 at https://tools.ietf.org/html/rfc8032#section-5.1.3
*
* Used by EC\Keys\Common.php
*
* @param BigInteger $y
* @param boolean $sign
* @return object[]
*/
public function recoverX(BigInteger $y, $sign)
{
$y = $this->factory->newInteger($y);
$y2 = $y->multiply($y);
$u = $y2->subtract($this->one);
$v = $this->d->multiply($y2)->add($this->one);
$x2 = $u->divide($v);
if ($x2->equals($this->zero)) {
if ($sign) {
throw new \RuntimeException('Unable to recover X coordinate (x2 = 0)');
}
return clone $this->zero;
}
// find the square root
/* we don't do $x2->squareRoot() because, quoting from
https://tools.ietf.org/html/rfc8032#section-5.1.1:
"For point decoding or "decompression", square roots modulo p are
needed. They can be computed using the Tonelli-Shanks algorithm or
the special case for p = 5 (mod 8). To find a square root of a,
first compute the candidate root x = a^((p+3)/8) (mod p)."
*/
$exp = $this->getModulo()->add(new BigInteger(3));
$exp = $exp->bitwise_rightShift(3);
$x = $x2->pow($exp);
// If v x^2 = -u (mod p), set x <-- x * 2^((p-1)/4), which is a square root.
if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
$temp = $this->getModulo()->subtract(new BigInteger(1));
$temp = $temp->bitwise_rightShift(2);
$temp = $this->two->pow($temp);
$x = $x->multiply($temp);
if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
throw new \RuntimeException('Unable to recover X coordinate');
}
}
if ($x->isOdd() != $sign) {
$x = $x->negate();
}
return [$x, $y];
}
/**
* Extract Secret Scalar
*
* Implements steps 1-3 at https://tools.ietf.org/html/rfc8032#section-5.1.5
*
* Used by the various key handlers
*
* @param string $str
* @return array
*/
public function extractSecret($str)
{
if (strlen($str) != 32) {
throw new \LengthException('Private Key should be 32-bytes long');
}
// 1. Hash the 32-byte private key using SHA-512, storing the digest in
// a 64-octet large buffer, denoted h. Only the lower 32 bytes are
// used for generating the public key.
$hash = new Hash('sha512');
$h = $hash->hash($str);
$h = substr($h, 0, 32);
// 2. Prune the buffer: The lowest three bits of the first octet are
// cleared, the highest bit of the last octet is cleared, and the
// second highest bit of the last octet is set.
$h[0] = $h[0] & chr(0xF8);
$h = strrev($h);
$h[0] = ($h[0] & chr(0x3F)) | chr(0x40);
// 3. Interpret the buffer as the little-endian integer, forming a
// secret scalar s.
$dA = new BigInteger($h, 256);
return [
'dA' => $dA,
'secret' => $str
];
}
/**
* Encode a point as a string
*
* @param array $point
* @return string
*/
public function encodePoint($point)
{
list($x, $y) = $point;
$y = $y->toBytes();
$y[0] = $y[0] & chr(0x7F);
if ($x->isOdd()) {
$y[0] = $y[0] | chr(0x80);
}
$y = strrev($y);
return $y;
}
/**
* Creates a random scalar multiplier
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function createRandomMultiplier()
{
return $this->extractSecret(Random::string(32))['dA'];
}
/**
* Converts an affine point to an extended homogeneous coordinate
*
* From https://tools.ietf.org/html/rfc8032#section-5.1.4 :
*
* A point (x,y) is represented in extended homogeneous coordinates (X, Y, Z, T),
* with x = X/Z, y = Y/Z, x * y = T/Z.
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (empty($p)) {
return [clone $this->zero, clone $this->one, clone $this->one, clone $this->zero];
}
if (isset($p[2])) {
return $p;
}
$p[2] = clone $this->one;
$p[3] = $p[0]->multiply($p[1]);
return $p;
}
/**
* Doubles a point on a curve
*
* @return FiniteField[]
*/
public function doublePoint(array $p)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p)) {
return [];
}
if (!isset($p[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
// from https://tools.ietf.org/html/rfc8032#page-12
list($x1, $y1, $z1, $t1) = $p;
$a = $x1->multiply($x1);
$b = $y1->multiply($y1);
$c = $this->two->multiply($z1)->multiply($z1);
$h = $a->add($b);
$temp = $x1->add($y1);
$e = $h->subtract($temp->multiply($temp));
$g = $a->subtract($b);
$f = $c->add($g);
$x3 = $e->multiply($f);
$y3 = $g->multiply($h);
$t3 = $e->multiply($h);
$z3 = $f->multiply($g);
return [$x3, $y3, $z3, $t3];
}
/**
* Adds two points on the curve
*
* @return FiniteField[]
*/
public function addPoint(array $p, array $q)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
if (count($q)) {
return $q;
}
if (count($p)) {
return $p;
}
return [];
}
if (!isset($p[2]) || !isset($q[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
if ($p[0]->equals($q[0])) {
return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
}
// from https://tools.ietf.org/html/rfc8032#page-12
list($x1, $y1, $z1, $t1) = $p;
list($x2, $y2, $z2, $t2) = $q;
$a = $y1->subtract($x1)->multiply($y2->subtract($x2));
$b = $y1->add($x1)->multiply($y2->add($x2));
$c = $t1->multiply($this->two)->multiply($this->d)->multiply($t2);
$d = $z1->multiply($this->two)->multiply($z2);
$e = $b->subtract($a);
$f = $d->subtract($c);
$g = $d->add($c);
$h = $b->add($a);
$x3 = $e->multiply($f);
$y3 = $g->multiply($h);
$t3 = $e->multiply($h);
$z3 = $f->multiply($g);
return [$x3, $y3, $z3, $t3];
}
}
At NFC Pay, we strive to provide a seamless and satisfactory experience with our services. This Refund Policy outlines the circumstances under which refunds may be issued for transactions made through our platform. Please read this policy carefully to understand your rights regarding refunds.
1. Eligibility for Refunds
Refunds may be considered under the following circumstances:
2. Non-Refundable Situations
Refunds will generally not be issued in the following situations:
3. Refund Process
To request a refund, please follow these steps:
4. Refund Exceptions
Certain transactions may be subject to specific terms and conditions, including non-refundable fees or charges. Please review the terms associated with each transaction carefully, as some fees may not be eligible for refunds.
5. Modifications to the Refund Policy
NFC Pay reserves the right to modify this Refund Policy at any time. Changes will be communicated through updates on our website and app, and the effective date will be updated accordingly. We encourage you to review this policy periodically to stay informed about our refund practices.
By using NFC Pay, you agree to this Refund Policy and understand the terms under which refunds may be issued. Our goal is to ensure a fair and transparent refund process, providing you with confidence and peace of mind when using our services.