<?php
namespace Matrix\Decomposition;
use Matrix\Exception;
use Matrix\Matrix;
class LU
{
private $luMatrix;
private $rows;
private $columns;
private $pivot = [];
public function __construct(Matrix $matrix)
{
$this->luMatrix = $matrix->toArray();
$this->rows = $matrix->rows;
$this->columns = $matrix->columns;
$this->buildPivot();
}
/**
* Get lower triangular factor.
*
* @return Matrix Lower triangular factor
*/
public function getL(): Matrix
{
$lower = [];
$columns = min($this->rows, $this->columns);
for ($row = 0; $row < $this->rows; ++$row) {
for ($column = 0; $column < $columns; ++$column) {
if ($row > $column) {
$lower[$row][$column] = $this->luMatrix[$row][$column];
} elseif ($row === $column) {
$lower[$row][$column] = 1.0;
} else {
$lower[$row][$column] = 0.0;
}
}
}
return new Matrix($lower);
}
/**
* Get upper triangular factor.
*
* @return Matrix Upper triangular factor
*/
public function getU(): Matrix
{
$upper = [];
$rows = min($this->rows, $this->columns);
for ($row = 0; $row < $rows; ++$row) {
for ($column = 0; $column < $this->columns; ++$column) {
if ($row <= $column) {
$upper[$row][$column] = $this->luMatrix[$row][$column];
} else {
$upper[$row][$column] = 0.0;
}
}
}
return new Matrix($upper);
}
/**
* Return pivot permutation vector.
*
* @return Matrix Pivot matrix
*/
public function getP(): Matrix
{
$pMatrix = [];
$pivots = $this->pivot;
$pivotCount = count($pivots);
foreach ($pivots as $row => $pivot) {
$pMatrix[$row] = array_fill(0, $pivotCount, 0);
$pMatrix[$row][$pivot] = 1;
}
return new Matrix($pMatrix);
}
/**
* Return pivot permutation vector.
*
* @return array Pivot vector
*/
public function getPivot(): array
{
return $this->pivot;
}
/**
* Is the matrix nonsingular?
*
* @return bool true if U, and hence A, is nonsingular
*/
public function isNonsingular(): bool
{
for ($diagonal = 0; $diagonal < $this->columns; ++$diagonal) {
if ($this->luMatrix[$diagonal][$diagonal] === 0.0) {
return false;
}
}
return true;
}
private function buildPivot(): void
{
for ($row = 0; $row < $this->rows; ++$row) {
$this->pivot[$row] = $row;
}
for ($column = 0; $column < $this->columns; ++$column) {
$luColumn = $this->localisedReferenceColumn($column);
$this->applyTransformations($column, $luColumn);
$pivot = $this->findPivot($column, $luColumn);
if ($pivot !== $column) {
$this->pivotExchange($pivot, $column);
}
$this->computeMultipliers($column);
unset($luColumn);
}
}
private function localisedReferenceColumn($column): array
{
$luColumn = [];
for ($row = 0; $row < $this->rows; ++$row) {
$luColumn[$row] = &$this->luMatrix[$row][$column];
}
return $luColumn;
}
private function applyTransformations($column, array $luColumn): void
{
for ($row = 0; $row < $this->rows; ++$row) {
$luRow = $this->luMatrix[$row];
// Most of the time is spent in the following dot product.
$kmax = min($row, $column);
$sValue = 0.0;
for ($kValue = 0; $kValue < $kmax; ++$kValue) {
$sValue += $luRow[$kValue] * $luColumn[$kValue];
}
$luRow[$column] = $luColumn[$row] -= $sValue;
}
}
private function findPivot($column, array $luColumn): int
{
$pivot = $column;
for ($row = $column + 1; $row < $this->rows; ++$row) {
if (abs($luColumn[$row]) > abs($luColumn[$pivot])) {
$pivot = $row;
}
}
return $pivot;
}
private function pivotExchange($pivot, $column): void
{
for ($kValue = 0; $kValue < $this->columns; ++$kValue) {
$tValue = $this->luMatrix[$pivot][$kValue];
$this->luMatrix[$pivot][$kValue] = $this->luMatrix[$column][$kValue];
$this->luMatrix[$column][$kValue] = $tValue;
}
$lValue = $this->pivot[$pivot];
$this->pivot[$pivot] = $this->pivot[$column];
$this->pivot[$column] = $lValue;
}
private function computeMultipliers($diagonal): void
{
if (($diagonal < $this->rows) && ($this->luMatrix[$diagonal][$diagonal] != 0.0)) {
for ($row = $diagonal + 1; $row < $this->rows; ++$row) {
$this->luMatrix[$row][$diagonal] /= $this->luMatrix[$diagonal][$diagonal];
}
}
}
private function pivotB(Matrix $B): array
{
$X = [];
foreach ($this->pivot as $rowId) {
$row = $B->getRows($rowId + 1)->toArray();
$X[] = array_pop($row);
}
return $X;
}
/**
* Solve A*X = B.
*
* @param Matrix $B a Matrix with as many rows as A and any number of columns
*
* @throws Exception
*
* @return Matrix X so that L*U*X = B(piv,:)
*/
public function solve(Matrix $B): Matrix
{
if ($B->rows !== $this->rows) {
throw new Exception('Matrix row dimensions are not equal');
}
if ($this->rows !== $this->columns) {
throw new Exception('LU solve() only works on square matrices');
}
if (!$this->isNonsingular()) {
throw new Exception('Can only perform operation on singular matrix');
}
// Copy right hand side with pivoting
$nx = $B->columns;
$X = $this->pivotB($B);
// Solve L*Y = B(piv,:)
for ($k = 0; $k < $this->columns; ++$k) {
for ($i = $k + 1; $i < $this->columns; ++$i) {
for ($j = 0; $j < $nx; ++$j) {
$X[$i][$j] -= $X[$k][$j] * $this->luMatrix[$i][$k];
}
}
}
// Solve U*X = Y;
for ($k = $this->columns - 1; $k >= 0; --$k) {
for ($j = 0; $j < $nx; ++$j) {
$X[$k][$j] /= $this->luMatrix[$k][$k];
}
for ($i = 0; $i < $k; ++$i) {
for ($j = 0; $j < $nx; ++$j) {
$X[$i][$j] -= $X[$k][$j] * $this->luMatrix[$i][$k];
}
}
}
return new Matrix($X);
}
}
At NFC Pay, we strive to provide a seamless and satisfactory experience with our services. This Refund Policy outlines the circumstances under which refunds may be issued for transactions made through our platform. Please read this policy carefully to understand your rights regarding refunds.
1. Eligibility for Refunds
Refunds may be considered under the following circumstances:
2. Non-Refundable Situations
Refunds will generally not be issued in the following situations:
3. Refund Process
To request a refund, please follow these steps:
4. Refund Exceptions
Certain transactions may be subject to specific terms and conditions, including non-refundable fees or charges. Please review the terms associated with each transaction carefully, as some fees may not be eligible for refunds.
5. Modifications to the Refund Policy
NFC Pay reserves the right to modify this Refund Policy at any time. Changes will be communicated through updates on our website and app, and the effective date will be updated accordingly. We encourage you to review this policy periodically to stay informed about our refund practices.
By using NFC Pay, you agree to this Refund Policy and understand the terms under which refunds may be issued. Our goal is to ensure a fair and transparent refund process, providing you with confidence and peace of mind when using our services.