<?php
namespace Defuse\Crypto;
use Defuse\Crypto\Exception as Ex;
final class Encoding
{
const CHECKSUM_BYTE_SIZE = 32;
const CHECKSUM_HASH_ALGO = 'sha256';
const SERIALIZE_HEADER_BYTES = 4;
/**
* Converts a byte string to a hexadecimal string without leaking
* information through side channels.
*
* @param string $byte_string
*
* @throws Ex\EnvironmentIsBrokenException
*
* @return string
*/
public static function binToHex($byte_string)
{
$hex = '';
$len = Core::ourStrlen($byte_string);
for ($i = 0; $i < $len; ++$i) {
$c = \ord($byte_string[$i]) & 0xf;
$b = \ord($byte_string[$i]) >> 4;
$hex .= \pack(
'CC',
87 + $b + ((($b - 10) >> 8) & ~38),
87 + $c + ((($c - 10) >> 8) & ~38)
);
}
return $hex;
}
/**
* Converts a hexadecimal string into a byte string without leaking
* information through side channels.
*
* @param string $hex_string
*
* @throws Ex\BadFormatException
* @throws Ex\EnvironmentIsBrokenException
*
* @return string
* @psalm-suppress TypeDoesNotContainType
*/
public static function hexToBin($hex_string)
{
$hex_pos = 0;
$bin = '';
$hex_len = Core::ourStrlen($hex_string);
$state = 0;
$c_acc = 0;
while ($hex_pos < $hex_len) {
$c = \ord($hex_string[$hex_pos]);
$c_num = $c ^ 48;
$c_num0 = ($c_num - 10) >> 8;
$c_alpha = ($c & ~32) - 55;
$c_alpha0 = (($c_alpha - 10) ^ ($c_alpha - 16)) >> 8;
if (($c_num0 | $c_alpha0) === 0) {
throw new Ex\BadFormatException(
'Encoding::hexToBin() input is not a hex string.'
);
}
$c_val = ($c_num0 & $c_num) | ($c_alpha & $c_alpha0);
if ($state === 0) {
$c_acc = $c_val * 16;
} else {
$bin .= \pack('C', $c_acc | $c_val);
}
$state ^= 1;
++$hex_pos;
}
return $bin;
}
/**
* Remove trialing whitespace without table look-ups or branches.
*
* Calling this function may leak the length of the string as well as the
* number of trailing whitespace characters through side-channels.
*
* @param string $string
* @return string
*/
public static function trimTrailingWhitespace($string = '')
{
$length = Core::ourStrlen($string);
if ($length < 1) {
return '';
}
do {
$prevLength = $length;
$last = $length - 1;
$chr = \ord($string[$last]);
/* Null Byte (0x00), a.k.a. \0 */
// if ($chr === 0x00) $length -= 1;
$sub = (($chr - 1) >> 8 ) & 1;
$length -= $sub;
$last -= $sub;
/* Horizontal Tab (0x09) a.k.a. \t */
$chr = \ord($string[$last]);
// if ($chr === 0x09) $length -= 1;
$sub = (((0x08 - $chr) & ($chr - 0x0a)) >> 8) & 1;
$length -= $sub;
$last -= $sub;
/* New Line (0x0a), a.k.a. \n */
$chr = \ord($string[$last]);
// if ($chr === 0x0a) $length -= 1;
$sub = (((0x09 - $chr) & ($chr - 0x0b)) >> 8) & 1;
$length -= $sub;
$last -= $sub;
/* Carriage Return (0x0D), a.k.a. \r */
$chr = \ord($string[$last]);
// if ($chr === 0x0d) $length -= 1;
$sub = (((0x0c - $chr) & ($chr - 0x0e)) >> 8) & 1;
$length -= $sub;
$last -= $sub;
/* Space */
$chr = \ord($string[$last]);
// if ($chr === 0x20) $length -= 1;
$sub = (((0x1f - $chr) & ($chr - 0x21)) >> 8) & 1;
$length -= $sub;
} while ($prevLength !== $length && $length > 0);
return (string) Core::ourSubstr($string, 0, $length);
}
/*
* SECURITY NOTE ON APPLYING CHECKSUMS TO SECRETS:
*
* The checksum introduces a potential security weakness. For example,
* suppose we apply a checksum to a key, and that an adversary has an
* exploit against the process containing the key, such that they can
* overwrite an arbitrary byte of memory and then cause the checksum to
* be verified and learn the result.
*
* In this scenario, the adversary can extract the key one byte at
* a time by overwriting it with their guess of its value and then
* asking if the checksum matches. If it does, their guess was right.
* This kind of attack may be more easy to implement and more reliable
* than a remote code execution attack.
*
* This attack also applies to authenticated encryption as a whole, in
* the situation where the adversary can overwrite a byte of the key
* and then cause a valid ciphertext to be decrypted, and then
* determine whether the MAC check passed or failed.
*
* By using the full SHA256 hash instead of truncating it, I'm ensuring
* that both ways of going about the attack are equivalently difficult.
* A shorter checksum of say 32 bits might be more useful to the
* adversary as an oracle in case their writes are coarser grained.
*
* Because the scenario assumes a serious vulnerability, we don't try
* to prevent attacks of this style.
*/
/**
* INTERNAL USE ONLY: Applies a version header, applies a checksum, and
* then encodes a byte string into a range of printable ASCII characters.
*
* @param string $header
* @param string $bytes
*
* @throws Ex\EnvironmentIsBrokenException
*
* @return string
*/
public static function saveBytesToChecksummedAsciiSafeString(
$header,
#[\SensitiveParameter]
$bytes
)
{
// Headers must be a constant length to prevent one type's header from
// being a prefix of another type's header, leading to ambiguity.
Core::ensureTrue(
Core::ourStrlen($header) === self::SERIALIZE_HEADER_BYTES,
'Header must be ' . self::SERIALIZE_HEADER_BYTES . ' bytes.'
);
return Encoding::binToHex(
$header .
$bytes .
\hash(
self::CHECKSUM_HASH_ALGO,
$header . $bytes,
true
)
);
}
/**
* INTERNAL USE ONLY: Decodes, verifies the header and checksum, and returns
* the encoded byte string.
*
* @param string $expected_header
* @param string $string
*
* @throws Ex\EnvironmentIsBrokenException
* @throws Ex\BadFormatException
*
* @return string
*/
public static function loadBytesFromChecksummedAsciiSafeString(
$expected_header,
#[\SensitiveParameter]
$string
)
{
// Headers must be a constant length to prevent one type's header from
// being a prefix of another type's header, leading to ambiguity.
Core::ensureTrue(
Core::ourStrlen($expected_header) === self::SERIALIZE_HEADER_BYTES,
'Header must be 4 bytes.'
);
/* If you get an exception here when attempting to load from a file, first pass your
key to Encoding::trimTrailingWhitespace() to remove newline characters, etc. */
$bytes = Encoding::hexToBin($string);
/* Make sure we have enough bytes to get the version header and checksum. */
if (Core::ourStrlen($bytes) < self::SERIALIZE_HEADER_BYTES + self::CHECKSUM_BYTE_SIZE) {
throw new Ex\BadFormatException(
'Encoded data is shorter than expected.'
);
}
/* Grab the version header. */
$actual_header = (string) Core::ourSubstr($bytes, 0, self::SERIALIZE_HEADER_BYTES);
if ($actual_header !== $expected_header) {
throw new Ex\BadFormatException(
'Invalid header.'
);
}
/* Grab the bytes that are part of the checksum. */
$checked_bytes = (string) Core::ourSubstr(
$bytes,
0,
Core::ourStrlen($bytes) - self::CHECKSUM_BYTE_SIZE
);
/* Grab the included checksum. */
$checksum_a = (string) Core::ourSubstr(
$bytes,
Core::ourStrlen($bytes) - self::CHECKSUM_BYTE_SIZE,
self::CHECKSUM_BYTE_SIZE
);
/* Re-compute the checksum. */
$checksum_b = \hash(self::CHECKSUM_HASH_ALGO, $checked_bytes, true);
/* Check if the checksum matches. */
if (! Core::hashEquals($checksum_a, $checksum_b)) {
throw new Ex\BadFormatException(
"Data is corrupted, the checksum doesn't match"
);
}
return (string) Core::ourSubstr(
$bytes,
self::SERIALIZE_HEADER_BYTES,
Core::ourStrlen($bytes) - self::SERIALIZE_HEADER_BYTES - self::CHECKSUM_BYTE_SIZE
);
}
}
At NFC Pay, we strive to provide a seamless and satisfactory experience with our services. This Refund Policy outlines the circumstances under which refunds may be issued for transactions made through our platform. Please read this policy carefully to understand your rights regarding refunds.
1. Eligibility for Refunds
Refunds may be considered under the following circumstances:
2. Non-Refundable Situations
Refunds will generally not be issued in the following situations:
3. Refund Process
To request a refund, please follow these steps:
4. Refund Exceptions
Certain transactions may be subject to specific terms and conditions, including non-refundable fees or charges. Please review the terms associated with each transaction carefully, as some fees may not be eligible for refunds.
5. Modifications to the Refund Policy
NFC Pay reserves the right to modify this Refund Policy at any time. Changes will be communicated through updates on our website and app, and the effective date will be updated accordingly. We encourage you to review this policy periodically to stay informed about our refund practices.
By using NFC Pay, you agree to this Refund Policy and understand the terms under which refunds may be issued. Our goal is to ensure a fair and transparent refund process, providing you with confidence and peace of mind when using our services.