<?php
/**
* Curves over y^2 = x^3 + a*x + b
*
* These are curves used in SEC 2 over prime fields: http://www.secg.org/SEC2-Ver-1.0.pdf
* The curve is a weierstrass curve with a[1], a[3] and a[2] set to 0.
*
* Uses Jacobian Coordinates for speed if able:
*
* https://en.wikipedia.org/wiki/Jacobian_curve
* https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Crypt\EC\BaseCurves;
use phpseclib3\Common\Functions\Strings;
use phpseclib3\Math\BigInteger;
use phpseclib3\Math\Common\FiniteField\Integer;
use phpseclib3\Math\PrimeField;
use phpseclib3\Math\PrimeField\Integer as PrimeInteger;
/**
* Curves over y^2 = x^3 + a*x + b
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class Prime extends Base
{
/**
* Prime Field Integer factory
*
* @var \phpseclib3\Math\PrimeFields
*/
protected $factory;
/**
* Cofficient for x^1
*
* @var object
*/
protected $a;
/**
* Cofficient for x^0
*
* @var object
*/
protected $b;
/**
* Base Point
*
* @var object
*/
protected $p;
/**
* The number one over the specified finite field
*
* @var object
*/
protected $one;
/**
* The number two over the specified finite field
*
* @var object
*/
protected $two;
/**
* The number three over the specified finite field
*
* @var object
*/
protected $three;
/**
* The number four over the specified finite field
*
* @var object
*/
protected $four;
/**
* The number eight over the specified finite field
*
* @var object
*/
protected $eight;
/**
* The modulo
*
* @var BigInteger
*/
protected $modulo;
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Sets the modulo
*/
public function setModulo(BigInteger $modulo)
{
$this->modulo = $modulo;
$this->factory = new PrimeField($modulo);
$this->two = $this->factory->newInteger(new BigInteger(2));
$this->three = $this->factory->newInteger(new BigInteger(3));
// used by jacobian coordinates
$this->one = $this->factory->newInteger(new BigInteger(1));
$this->four = $this->factory->newInteger(new BigInteger(4));
$this->eight = $this->factory->newInteger(new BigInteger(8));
}
/**
* Set coefficients a and b
*/
public function setCoefficients(BigInteger $a, BigInteger $b)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->a = $this->factory->newInteger($a);
$this->b = $this->factory->newInteger($b);
}
/**
* Set x and y coordinates for the base point
*
* @param BigInteger|PrimeInteger $x
* @param BigInteger|PrimeInteger $y
* @return PrimeInteger[]
*/
public function setBasePoint($x, $y)
{
switch (true) {
case !$x instanceof BigInteger && !$x instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 1 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
case !$y instanceof BigInteger && !$y instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 2 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
}
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->p = [
$x instanceof BigInteger ? $this->factory->newInteger($x) : $x,
$y instanceof BigInteger ? $this->factory->newInteger($y) : $y
];
}
/**
* Retrieve the base point as an array
*
* @return array
*/
public function getBasePoint()
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
/*
if (!isset($this->p)) {
throw new \RuntimeException('setBasePoint needs to be called before this method');
}
*/
return $this->p;
}
/**
* Adds two "fresh" jacobian form on the curve
*
* @return FiniteField[]
*/
protected function jacobianAddPointMixedXY(array $p, array $q)
{
list($u1, $s1) = $p;
list($u2, $s2) = $q;
if ($u1->equals($u2)) {
if (!$s1->equals($s2)) {
return [];
} else {
return $this->doublePoint($p);
}
}
$h = $u2->subtract($u1);
$r = $s2->subtract($s1);
$h2 = $h->multiply($h);
$h3 = $h2->multiply($h);
$v = $u1->multiply($h2);
$x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
$y3 = $r->multiply(
$v->subtract($x3)
)->subtract(
$s1->multiply($h3)
);
return [$x3, $y3, $h];
}
/**
* Adds one "fresh" jacobian form on the curve
*
* The second parameter should be the "fresh" one
*
* @return FiniteField[]
*/
protected function jacobianAddPointMixedX(array $p, array $q)
{
list($u1, $s1, $z1) = $p;
list($x2, $y2) = $q;
$z12 = $z1->multiply($z1);
$u2 = $x2->multiply($z12);
$s2 = $y2->multiply($z12->multiply($z1));
if ($u1->equals($u2)) {
if (!$s1->equals($s2)) {
return [];
} else {
return $this->doublePoint($p);
}
}
$h = $u2->subtract($u1);
$r = $s2->subtract($s1);
$h2 = $h->multiply($h);
$h3 = $h2->multiply($h);
$v = $u1->multiply($h2);
$x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
$y3 = $r->multiply(
$v->subtract($x3)
)->subtract(
$s1->multiply($h3)
);
$z3 = $h->multiply($z1);
return [$x3, $y3, $z3];
}
/**
* Adds two jacobian coordinates on the curve
*
* @return FiniteField[]
*/
protected function jacobianAddPoint(array $p, array $q)
{
list($x1, $y1, $z1) = $p;
list($x2, $y2, $z2) = $q;
$z12 = $z1->multiply($z1);
$z22 = $z2->multiply($z2);
$u1 = $x1->multiply($z22);
$u2 = $x2->multiply($z12);
$s1 = $y1->multiply($z22->multiply($z2));
$s2 = $y2->multiply($z12->multiply($z1));
if ($u1->equals($u2)) {
if (!$s1->equals($s2)) {
return [];
} else {
return $this->doublePoint($p);
}
}
$h = $u2->subtract($u1);
$r = $s2->subtract($s1);
$h2 = $h->multiply($h);
$h3 = $h2->multiply($h);
$v = $u1->multiply($h2);
$x3 = $r->multiply($r)->subtract($h3)->subtract($v->multiply($this->two));
$y3 = $r->multiply(
$v->subtract($x3)
)->subtract(
$s1->multiply($h3)
);
$z3 = $h->multiply($z1)->multiply($z2);
return [$x3, $y3, $z3];
}
/**
* Adds two points on the curve
*
* @return FiniteField[]
*/
public function addPoint(array $p, array $q)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
if (count($q)) {
return $q;
}
if (count($p)) {
return $p;
}
return [];
}
// use jacobian coordinates
if (isset($p[2]) && isset($q[2])) {
if (isset($p['fresh']) && isset($q['fresh'])) {
return $this->jacobianAddPointMixedXY($p, $q);
}
if (isset($p['fresh'])) {
return $this->jacobianAddPointMixedX($q, $p);
}
if (isset($q['fresh'])) {
return $this->jacobianAddPointMixedX($p, $q);
}
return $this->jacobianAddPoint($p, $q);
}
if (isset($p[2]) || isset($q[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to Jacobi coordinates or vice versa');
}
if ($p[0]->equals($q[0])) {
if (!$p[1]->equals($q[1])) {
return [];
} else { // eg. doublePoint
list($numerator, $denominator) = $this->doublePointHelper($p);
}
} else {
$numerator = $q[1]->subtract($p[1]);
$denominator = $q[0]->subtract($p[0]);
}
$slope = $numerator->divide($denominator);
$x = $slope->multiply($slope)->subtract($p[0])->subtract($q[0]);
$y = $slope->multiply($p[0]->subtract($x))->subtract($p[1]);
return [$x, $y];
}
/**
* Returns the numerator and denominator of the slope
*
* @return FiniteField[]
*/
protected function doublePointHelper(array $p)
{
$numerator = $this->three->multiply($p[0])->multiply($p[0])->add($this->a);
$denominator = $this->two->multiply($p[1]);
return [$numerator, $denominator];
}
/**
* Doubles a jacobian coordinate on the curve
*
* @return FiniteField[]
*/
protected function jacobianDoublePoint(array $p)
{
list($x, $y, $z) = $p;
$x2 = $x->multiply($x);
$y2 = $y->multiply($y);
$z2 = $z->multiply($z);
$s = $this->four->multiply($x)->multiply($y2);
$m1 = $this->three->multiply($x2);
$m2 = $this->a->multiply($z2->multiply($z2));
$m = $m1->add($m2);
$x1 = $m->multiply($m)->subtract($this->two->multiply($s));
$y1 = $m->multiply($s->subtract($x1))->subtract(
$this->eight->multiply($y2->multiply($y2))
);
$z1 = $this->two->multiply($y)->multiply($z);
return [$x1, $y1, $z1];
}
/**
* Doubles a "fresh" jacobian coordinate on the curve
*
* @return FiniteField[]
*/
protected function jacobianDoublePointMixed(array $p)
{
list($x, $y) = $p;
$x2 = $x->multiply($x);
$y2 = $y->multiply($y);
$s = $this->four->multiply($x)->multiply($y2);
$m1 = $this->three->multiply($x2);
$m = $m1->add($this->a);
$x1 = $m->multiply($m)->subtract($this->two->multiply($s));
$y1 = $m->multiply($s->subtract($x1))->subtract(
$this->eight->multiply($y2->multiply($y2))
);
$z1 = $this->two->multiply($y);
return [$x1, $y1, $z1];
}
/**
* Doubles a point on a curve
*
* @return FiniteField[]
*/
public function doublePoint(array $p)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p)) {
return [];
}
// use jacobian coordinates
if (isset($p[2])) {
if (isset($p['fresh'])) {
return $this->jacobianDoublePointMixed($p);
}
return $this->jacobianDoublePoint($p);
}
list($numerator, $denominator) = $this->doublePointHelper($p);
$slope = $numerator->divide($denominator);
$x = $slope->multiply($slope)->subtract($p[0])->subtract($p[0]);
$y = $slope->multiply($p[0]->subtract($x))->subtract($p[1]);
return [$x, $y];
}
/**
* Returns the X coordinate and the derived Y coordinate
*
* @return array
*/
public function derivePoint($m)
{
$y = ord(Strings::shift($m));
$x = new BigInteger($m, 256);
$xp = $this->convertInteger($x);
switch ($y) {
case 2:
$ypn = false;
break;
case 3:
$ypn = true;
break;
default:
throw new \RuntimeException('Coordinate not in recognized format');
}
$temp = $xp->multiply($this->a);
$temp = $xp->multiply($xp)->multiply($xp)->add($temp);
$temp = $temp->add($this->b);
$b = $temp->squareRoot();
if (!$b) {
throw new \RuntimeException('Unable to derive Y coordinate');
}
$bn = $b->isOdd();
$yp = $ypn == $bn ? $b : $b->negate();
return [$xp, $yp];
}
/**
* Tests whether or not the x / y values satisfy the equation
*
* @return boolean
*/
public function verifyPoint(array $p)
{
list($x, $y) = $p;
$lhs = $y->multiply($y);
$temp = $x->multiply($this->a);
$temp = $x->multiply($x)->multiply($x)->add($temp);
$rhs = $temp->add($this->b);
return $lhs->equals($rhs);
}
/**
* Returns the modulo
*
* @return \phpseclib3\Math\BigInteger
*/
public function getModulo()
{
return $this->modulo;
}
/**
* Returns the a coefficient
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function getA()
{
return $this->a;
}
/**
* Returns the a coefficient
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function getB()
{
return $this->b;
}
/**
* Multiply and Add Points
*
* Adapted from:
* https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/base.js#L125
*
* @return int[]
*/
public function multiplyAddPoints(array $points, array $scalars)
{
$length = count($points);
foreach ($points as &$point) {
$point = $this->convertToInternal($point);
}
$wnd = [$this->getNAFPoints($points[0], 7)];
$wndWidth = [isset($points[0]['nafwidth']) ? $points[0]['nafwidth'] : 7];
for ($i = 1; $i < $length; $i++) {
$wnd[] = $this->getNAFPoints($points[$i], 1);
$wndWidth[] = isset($points[$i]['nafwidth']) ? $points[$i]['nafwidth'] : 1;
}
$naf = [];
// comb all window NAFs
$max = 0;
for ($i = $length - 1; $i >= 1; $i -= 2) {
$a = $i - 1;
$b = $i;
if ($wndWidth[$a] != 1 || $wndWidth[$b] != 1) {
$naf[$a] = $scalars[$a]->getNAF($wndWidth[$a]);
$naf[$b] = $scalars[$b]->getNAF($wndWidth[$b]);
$max = max(count($naf[$a]), count($naf[$b]), $max);
continue;
}
$comb = [
$points[$a], // 1
null, // 3
null, // 5
$points[$b] // 7
];
$comb[1] = $this->addPoint($points[$a], $points[$b]);
$comb[2] = $this->addPoint($points[$a], $this->negatePoint($points[$b]));
$index = [
-3, /* -1 -1 */
-1, /* -1 0 */
-5, /* -1 1 */
-7, /* 0 -1 */
0, /* 0 -1 */
7, /* 0 1 */
5, /* 1 -1 */
1, /* 1 0 */
3 /* 1 1 */
];
$jsf = self::getJSFPoints($scalars[$a], $scalars[$b]);
$max = max(count($jsf[0]), $max);
if ($max > 0) {
$naf[$a] = array_fill(0, $max, 0);
$naf[$b] = array_fill(0, $max, 0);
} else {
$naf[$a] = [];
$naf[$b] = [];
}
for ($j = 0; $j < $max; $j++) {
$ja = isset($jsf[0][$j]) ? $jsf[0][$j] : 0;
$jb = isset($jsf[1][$j]) ? $jsf[1][$j] : 0;
$naf[$a][$j] = $index[3 * ($ja + 1) + $jb + 1];
$naf[$b][$j] = 0;
$wnd[$a] = $comb;
}
}
$acc = [];
$temp = [0, 0, 0, 0];
for ($i = $max; $i >= 0; $i--) {
$k = 0;
while ($i >= 0) {
$zero = true;
for ($j = 0; $j < $length; $j++) {
$temp[$j] = isset($naf[$j][$i]) ? $naf[$j][$i] : 0;
if ($temp[$j] != 0) {
$zero = false;
}
}
if (!$zero) {
break;
}
$k++;
$i--;
}
if ($i >= 0) {
$k++;
}
while ($k--) {
$acc = $this->doublePoint($acc);
}
if ($i < 0) {
break;
}
for ($j = 0; $j < $length; $j++) {
$z = $temp[$j];
$p = null;
if ($z == 0) {
continue;
}
$p = $z > 0 ?
$wnd[$j][($z - 1) >> 1] :
$this->negatePoint($wnd[$j][(-$z - 1) >> 1]);
$acc = $this->addPoint($acc, $p);
}
}
return $this->convertToAffine($acc);
}
/**
* Precomputes NAF points
*
* Adapted from:
* https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/base.js#L351
*
* @return int[]
*/
private function getNAFPoints(array $point, $wnd)
{
if (isset($point['naf'])) {
return $point['naf'];
}
$res = [$point];
$max = (1 << $wnd) - 1;
$dbl = $max == 1 ? null : $this->doublePoint($point);
for ($i = 1; $i < $max; $i++) {
$res[] = $this->addPoint($res[$i - 1], $dbl);
}
$point['naf'] = $res;
/*
$str = '';
foreach ($res as $re) {
$re[0] = bin2hex($re[0]->toBytes());
$re[1] = bin2hex($re[1]->toBytes());
$str.= " ['$re[0]', '$re[1]'],\r\n";
}
file_put_contents('temp.txt', $str);
exit;
*/
return $res;
}
/**
* Precomputes points in Joint Sparse Form
*
* Adapted from:
* https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/utils.js#L96
*
* @return int[]
*/
private static function getJSFPoints(Integer $k1, Integer $k2)
{
static $three;
if (!isset($three)) {
$three = new BigInteger(3);
}
$jsf = [[], []];
$k1 = $k1->toBigInteger();
$k2 = $k2->toBigInteger();
$d1 = 0;
$d2 = 0;
while ($k1->compare(new BigInteger(-$d1)) > 0 || $k2->compare(new BigInteger(-$d2)) > 0) {
// first phase
$m14 = $k1->testBit(0) + 2 * $k1->testBit(1);
$m14 += $d1;
$m14 &= 3;
$m24 = $k2->testBit(0) + 2 * $k2->testBit(1);
$m24 += $d2;
$m24 &= 3;
if ($m14 == 3) {
$m14 = -1;
}
if ($m24 == 3) {
$m24 = -1;
}
$u1 = 0;
if ($m14 & 1) { // if $m14 is odd
$m8 = $k1->testBit(0) + 2 * $k1->testBit(1) + 4 * $k1->testBit(2);
$m8 += $d1;
$m8 &= 7;
$u1 = ($m8 == 3 || $m8 == 5) && $m24 == 2 ? -$m14 : $m14;
}
$jsf[0][] = $u1;
$u2 = 0;
if ($m24 & 1) { // if $m24 is odd
$m8 = $k2->testBit(0) + 2 * $k2->testBit(1) + 4 * $k2->testBit(2);
$m8 += $d2;
$m8 &= 7;
$u2 = ($m8 == 3 || $m8 == 5) && $m14 == 2 ? -$m24 : $m24;
}
$jsf[1][] = $u2;
// second phase
if (2 * $d1 == $u1 + 1) {
$d1 = 1 - $d1;
}
if (2 * $d2 == $u2 + 1) {
$d2 = 1 - $d2;
}
$k1 = $k1->bitwise_rightShift(1);
$k2 = $k2->bitwise_rightShift(1);
}
return $jsf;
}
/**
* Returns the affine point
*
* A Jacobian Coordinate is of the form (x, y, z).
* To convert a Jacobian Coordinate to an Affine Point
* you do (x / z^2, y / z^3)
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToAffine(array $p)
{
if (!isset($p[2])) {
return $p;
}
list($x, $y, $z) = $p;
$z = $this->one->divide($z);
$z2 = $z->multiply($z);
return [
$x->multiply($z2),
$y->multiply($z2)->multiply($z)
];
}
/**
* Converts an affine point to a jacobian coordinate
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (isset($p[2])) {
return $p;
}
$p[2] = clone $this->one;
$p['fresh'] = true;
return $p;
}
}
At NFC Pay, your privacy is of utmost importance to us. This Privacy Policy outlines how we collect, use, share, and protect your personal information when you use our services, including our website and mobile applications.
1. Information We Collect
2. How We Use Your Information
We use the information we collect for the following purposes:
3. Sharing Your Information
We may share your personal information in the following circumstances:
4. Security of Your Information
We take the security of your personal information seriously and implement a variety of security measures, including encryption, secure servers, and access controls, to protect your data from unauthorized access, disclosure, alteration, or destruction. However, no method of transmission over the internet or electronic storage is completely secure, and we cannot guarantee its absolute security.
5. Your Privacy Rights
Depending on your location, you may have certain rights regarding your personal information, such as:
6. Third-Party Links
Our services may contain links to third-party websites or services. We are not responsible for the privacy practices or the content of these third-party sites. We encourage you to review the privacy policies of those third parties.
7. Children’s Privacy
Our services are not intended for individuals under the age of 13. We do not knowingly collect personal information from children under 13. If we become aware that we have collected personal information from a child under 13, we will take steps to delete that information.
8. Changes to This Privacy Policy
We may update this Privacy Policy from time to time to reflect changes in our practices or for other operational, legal, or regulatory reasons. We will notify you of any significant changes by posting the new Privacy Policy on our website and updating the effective date.
9. Contact Us
If you have any questions or concerns about this Privacy Policy or our data practices, please contact us at:
Email: support@nfcpay.com