/home/kueuepay/www/vendor/markbaker/complex/classes/src/Functions.php
<?php

namespace Complex;

use InvalidArgumentException;

class Functions
{
    /**
     * Returns the absolute value (modulus) of a complex number.
     * Also known as the rho of the complex number, i.e. the distance/radius
     *   from the centrepoint to the representation of the number in polar coordinates.
     *
     * This function is a synonym for rho()
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The absolute (or rho) value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     *
     * @see    rho
     *
     */
    public static function abs($complex): float
    {
        return self::rho($complex);
    }

    /**
     * Returns the inverse cosine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function acos($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        $invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
        $adjust = new Complex(
            $complex->getReal() - $invsqrt->getImaginary(),
            $complex->getImaginary() + $invsqrt->getReal()
        );
        $log = self::ln($adjust);

        return new Complex(
            $log->getImaginary(),
            -1 * $log->getReal()
        );
    }

    /**
     * Returns the inverse hyperbolic cosine of a complex number.
     *
     * Formula from Wolfram Alpha:
     *   cosh^(-1)z = ln(z + sqrt(z + 1) sqrt(z - 1)).
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function acosh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal() && ($complex->getReal() > 1)) {
            return new Complex(\acosh($complex->getReal()));
        }

        $acosh = self::ln(
            Operations::add(
                $complex,
                Operations::multiply(
                    self::sqrt(Operations::add($complex, 1)),
                    self::sqrt(Operations::subtract($complex, 1))
                )
            )
        );

        return $acosh;
    }

    /**
     * Returns the inverse cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acot($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::atan(self::inverse($complex));
    }

    /**
     * Returns the inverse hyperbolic cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acoth($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::atanh(self::inverse($complex));
    }

    /**
     * Returns the inverse cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acsc($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::asin(self::inverse($complex));
    }

    /**
     * Returns the inverse hyperbolic cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acsch($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::asinh(self::inverse($complex));
    }

    /**
     * Returns the argument of a complex number.
     * Also known as the theta of the complex number, i.e. the angle in radians
     *   from the real axis to the representation of the number in polar coordinates.
     *
     * This function is a synonym for theta()
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The argument (or theta) value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     *
     * @see    theta
     */
    public static function argument($complex): float
    {
        return self::theta($complex);
    }

    /**
     * Returns the inverse secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function asec($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::acos(self::inverse($complex));
    }

    /**
     * Returns the inverse hyperbolic secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function asech($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::acosh(self::inverse($complex));
    }

    /**
     * Returns the inverse sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function asin($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        $invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
        $adjust = new Complex(
            $invsqrt->getReal() - $complex->getImaginary(),
            $invsqrt->getImaginary() + $complex->getReal()
        );
        $log = self::ln($adjust);

        return new Complex(
            $log->getImaginary(),
            -1 * $log->getReal()
        );
    }

    /**
     * Returns the inverse hyperbolic sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function asinh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal() && ($complex->getReal() > 1)) {
            return new Complex(\asinh($complex->getReal()));
        }

        $asinh = clone $complex;
        $asinh = $asinh->reverse()
            ->invertReal();
        $asinh = self::asin($asinh);

        return $asinh->reverse()
            ->invertImaginary();
    }

    /**
     * Returns the inverse tangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function atan($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\atan($complex->getReal()));
        }

        $t1Value = new Complex(-1 * $complex->getImaginary(), $complex->getReal());
        $uValue = new Complex(1, 0);

        $d1Value = clone $uValue;
        $d1Value = Operations::subtract($d1Value, $t1Value);
        $d2Value = Operations::add($t1Value, $uValue);
        $uResult = $d1Value->divideBy($d2Value);
        $uResult = self::ln($uResult);

        $realMultiplier = -0.5;
        $imaginaryMultiplier = 0.5;

        if (abs($uResult->getImaginary()) === M_PI) {
            // If we have an imaginary value at the max or min (PI or -PI), then we need to ensure
            //    that the primary is assigned for the correct quadrant.
            $realMultiplier = (
                ($uResult->getImaginary() === M_PI && $uResult->getReal() > 0.0) ||
                ($uResult->getImaginary() === -M_PI && $uResult->getReal() < 0.0)
            ) ? 0.5 : -0.5;
        }

        return new Complex(
            $uResult->getImaginary() * $realMultiplier,
            $uResult->getReal() * $imaginaryMultiplier,
            $complex->getSuffix()
        );
    }

    /**
     * Returns the inverse hyperbolic tangent of a complex number.
     *
     * Formula from Wolfram Alpha:
     *  tanh^(-1)z = 1/2 [ln(1 + z) - ln(1 - z)].
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function atanh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            $real = $complex->getReal();
            if ($real >= -1.0 && $real <= 1.0) {
                return new Complex(\atanh($real));
            } else {
                return new Complex(\atanh(1 / $real), (($real < 0.0) ? M_PI_2 : -1 * M_PI_2));
            }
        }

        $atanh = Operations::multiply(
            Operations::subtract(
                self::ln(Operations::add(1.0, $complex)),
                self::ln(Operations::subtract(1.0, $complex))
            ),
            0.5
        );

        return $atanh;
    }

    /**
     * Returns the complex conjugate of a complex number
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The conjugate of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function conjugate($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return new Complex(
            $complex->getReal(),
            -1 * $complex->getImaginary(),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the cosine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function cos($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\cos($complex->getReal()));
        }

        return self::conjugate(
            new Complex(
                \cos($complex->getReal()) * \cosh($complex->getImaginary()),
                \sin($complex->getReal()) * \sinh($complex->getImaginary()),
                $complex->getSuffix()
            )
        );
    }

    /**
     * Returns the hyperbolic cosine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function cosh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\cosh($complex->getReal()));
        }

        return new Complex(
            \cosh($complex->getReal()) * \cos($complex->getImaginary()),
            \sinh($complex->getReal()) * \sin($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function cot($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::inverse(self::tan($complex));
    }

    /**
     * Returns the hyperbolic cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function coth($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::inverse(self::tanh($complex));
    }

    /**
     * Returns the cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function csc($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::inverse(self::sin($complex));
    }

    /**
     * Returns the hyperbolic cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function csch($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::inverse(self::sinh($complex));
    }

    /**
     * Returns the exponential of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The exponential of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function exp($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && (\abs($complex->getImaginary()) == M_PI)) {
            return new Complex(-1.0, 0.0);
        }

        $rho = \exp($complex->getReal());

        return new Complex(
            $rho * \cos($complex->getImaginary()),
            $rho * \sin($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the inverse of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException    If function would result in a division by zero
     */
    public static function inverse($complex): Complex
    {
        $complex = clone Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            throw new InvalidArgumentException('Division by zero');
        }

        return $complex->divideInto(1.0);
    }

    /**
     * Returns the natural logarithm of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The natural logarithm of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
     */
    public static function ln($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
            throw new InvalidArgumentException();
        }

        return new Complex(
            \log(self::rho($complex)),
            self::theta($complex),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the base-2 logarithm of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The base-2 logarithm of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
     */
    public static function log2($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
            throw new InvalidArgumentException();
        } elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
            return new Complex(\log($complex->getReal(), 2), 0.0, $complex->getSuffix());
        }

        return self::ln($complex)
            ->multiply(\log(Complex::EULER, 2));
    }

    /**
     * Returns the common logarithm (base 10) of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The common logarithm (base 10) of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
     */
    public static function log10($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
            throw new InvalidArgumentException();
        } elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
            return new Complex(\log10($complex->getReal()), 0.0, $complex->getSuffix());
        }

        return self::ln($complex)
            ->multiply(\log10(Complex::EULER));
    }

    /**
     * Returns the negative of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The negative value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     *
     * @see    rho
     *
     */
    public static function negative($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return new Complex(
            -1 * $complex->getReal(),
            -1 * $complex->getImaginary(),
            $complex->getSuffix()
        );
    }

    /**
     * Returns a complex number raised to a power.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @param     float|integer    $power      The power to raise this value to
     * @return    Complex          The complex argument raised to the real power.
     * @throws    Exception        If the power argument isn't a valid real
     */
    public static function pow($complex, $power): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (!is_numeric($power)) {
            throw new Exception('Power argument must be a real number');
        }

        if ($complex->getImaginary() == 0.0 && $complex->getReal() >= 0.0) {
            return new Complex(\pow($complex->getReal(), $power));
        }

        $rValue = \sqrt(($complex->getReal() * $complex->getReal()) + ($complex->getImaginary() * $complex->getImaginary()));
        $rPower = \pow($rValue, $power);
        $theta = $complex->argument() * $power;
        if ($theta == 0) {
            return new Complex(1);
        }

        return new Complex($rPower * \cos($theta), $rPower * \sin($theta), $complex->getSuffix());
    }

    /**
     * Returns the rho of a complex number.
     * This is the distance/radius from the centrepoint to the representation of the number in polar coordinates.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The rho value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function rho($complex): float
    {
        $complex = Complex::validateComplexArgument($complex);

        return \sqrt(
            ($complex->getReal() * $complex->getReal()) +
            ($complex->getImaginary() * $complex->getImaginary())
        );
    }

    /**
     * Returns the secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function sec($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::inverse(self::cos($complex));
    }

    /**
     * Returns the hyperbolic secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function sech($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::inverse(self::cosh($complex));
    }

    /**
     * Returns the sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function sin($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\sin($complex->getReal()));
        }

        return new Complex(
            \sin($complex->getReal()) * \cosh($complex->getImaginary()),
            \cos($complex->getReal()) * \sinh($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the hyperbolic sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function sinh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\sinh($complex->getReal()));
        }

        return new Complex(
            \sinh($complex->getReal()) * \cos($complex->getImaginary()),
            \cosh($complex->getReal()) * \sin($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the square root of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The Square root of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function sqrt($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        $theta = self::theta($complex);
        $delta1 = \cos($theta / 2);
        $delta2 = \sin($theta / 2);
        $rho = \sqrt(self::rho($complex));

        return new Complex($delta1 * $rho, $delta2 * $rho, $complex->getSuffix());
    }

    /**
     * Returns the tangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException    If function would result in a division by zero
     */
    public static function tan($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\tan($complex->getReal()));
        }

        $real = $complex->getReal();
        $imaginary = $complex->getImaginary();
        $divisor = 1 + \pow(\tan($real), 2) * \pow(\tanh($imaginary), 2);
        if ($divisor == 0.0) {
            throw new InvalidArgumentException('Division by zero');
        }

        return new Complex(
            \pow(self::sech($imaginary)->getReal(), 2) * \tan($real) / $divisor,
            \pow(self::sec($real)->getReal(), 2) * \tanh($imaginary) / $divisor,
            $complex->getSuffix()
        );
    }

    /**
     * Returns the hyperbolic tangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function tanh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);
        $real = $complex->getReal();
        $imaginary = $complex->getImaginary();
        $divisor = \cos($imaginary) * \cos($imaginary) + \sinh($real) * \sinh($real);
        if ($divisor == 0.0) {
            throw new InvalidArgumentException('Division by zero');
        }

        return new Complex(
            \sinh($real) * \cosh($real) / $divisor,
            0.5 * \sin(2 * $imaginary) / $divisor,
            $complex->getSuffix()
        );
    }

    /**
     * Returns the theta of a complex number.
     *   This is the angle in radians from the real axis to the representation of the number in polar coordinates.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The theta value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function theta($complex): float
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0) {
            if ($complex->isReal()) {
                return 0.0;
            } elseif ($complex->getImaginary() < 0.0) {
                return M_PI / -2;
            }
            return M_PI / 2;
        } elseif ($complex->getReal() > 0.0) {
            return \atan($complex->getImaginary() / $complex->getReal());
        } elseif ($complex->getImaginary() < 0.0) {
            return -(M_PI - \atan(\abs($complex->getImaginary()) / \abs($complex->getReal())));
        }

        return M_PI - \atan($complex->getImaginary() / \abs($complex->getReal()));
    }
}
Privacy Policy
top

At NFC Pay, your privacy is of utmost importance to us. This Privacy Policy outlines how we collect, use, share, and protect your personal information when you use our services, including our website and mobile applications.
1. Information We Collect
 

2. How We Use Your Information
We use the information we collect for the following purposes:
 

3. Sharing Your Information
We may share your personal information in the following circumstances:
 

4. Security of Your Information
We take the security of your personal information seriously and implement a variety of security measures, including encryption, secure servers, and access controls, to protect your data from unauthorized access, disclosure, alteration, or destruction. However, no method of transmission over the internet or electronic storage is completely secure, and we cannot guarantee its absolute security.
5. Your Privacy Rights
Depending on your location, you may have certain rights regarding your personal information, such as:
 

6. Third-Party Links
Our services may contain links to third-party websites or services. We are not responsible for the privacy practices or the content of these third-party sites. We encourage you to review the privacy policies of those third parties.
7. Children’s Privacy
Our services are not intended for individuals under the age of 13. We do not knowingly collect personal information from children under 13. If we become aware that we have collected personal information from a child under 13, we will take steps to delete that information.
8. Changes to This Privacy Policy
We may update this Privacy Policy from time to time to reflect changes in our practices or for other operational, legal, or regulatory reasons. We will notify you of any significant changes by posting the new Privacy Policy on our website and updating the effective date.
9. Contact Us
If you have any questions or concerns about this Privacy Policy or our data practices, please contact us at:
Email: support@nfcpay.com