<?php
/**
* Ed448
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
*/
namespace phpseclib3\Crypt\EC\Curves;
use phpseclib3\Crypt\EC\BaseCurves\TwistedEdwards;
use phpseclib3\Crypt\Hash;
use phpseclib3\Crypt\Random;
use phpseclib3\Math\BigInteger;
class Ed448 extends TwistedEdwards
{
const HASH = 'shake256-912';
const SIZE = 57;
public function __construct()
{
// 2^448 - 2^224 - 1
$this->setModulo(new BigInteger(
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE' .
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF',
16
));
$this->setCoefficients(
new BigInteger(1),
// -39081
new BigInteger('FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE' .
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6756', 16)
);
$this->setBasePoint(
new BigInteger('4F1970C66BED0DED221D15A622BF36DA9E146570470F1767EA6DE324' .
'A3D3A46412AE1AF72AB66511433B80E18B00938E2626A82BC70CC05E', 16),
new BigInteger('693F46716EB6BC248876203756C9C7624BEA73736CA3984087789C1E' .
'05A0C2D73AD3FF1CE67C39C4FDBD132C4ED7C8AD9808795BF230FA14', 16)
);
$this->setOrder(new BigInteger(
'3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' .
'7CCA23E9C44EDB49AED63690216CC2728DC58F552378C292AB5844F3',
16
));
}
/**
* Recover X from Y
*
* Implements steps 2-4 at https://tools.ietf.org/html/rfc8032#section-5.2.3
*
* Used by EC\Keys\Common.php
*
* @param BigInteger $y
* @param boolean $sign
* @return object[]
*/
public function recoverX(BigInteger $y, $sign)
{
$y = $this->factory->newInteger($y);
$y2 = $y->multiply($y);
$u = $y2->subtract($this->one);
$v = $this->d->multiply($y2)->subtract($this->one);
$x2 = $u->divide($v);
if ($x2->equals($this->zero)) {
if ($sign) {
throw new \RuntimeException('Unable to recover X coordinate (x2 = 0)');
}
return clone $this->zero;
}
// find the square root
$exp = $this->getModulo()->add(new BigInteger(1));
$exp = $exp->bitwise_rightShift(2);
$x = $x2->pow($exp);
if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
throw new \RuntimeException('Unable to recover X coordinate');
}
if ($x->isOdd() != $sign) {
$x = $x->negate();
}
return [$x, $y];
}
/**
* Extract Secret Scalar
*
* Implements steps 1-3 at https://tools.ietf.org/html/rfc8032#section-5.2.5
*
* Used by the various key handlers
*
* @param string $str
* @return array
*/
public function extractSecret($str)
{
if (strlen($str) != 57) {
throw new \LengthException('Private Key should be 57-bytes long');
}
// 1. Hash the 57-byte private key using SHAKE256(x, 114), storing the
// digest in a 114-octet large buffer, denoted h. Only the lower 57
// bytes are used for generating the public key.
$hash = new Hash('shake256-912');
$h = $hash->hash($str);
$h = substr($h, 0, 57);
// 2. Prune the buffer: The two least significant bits of the first
// octet are cleared, all eight bits the last octet are cleared, and
// the highest bit of the second to last octet is set.
$h[0] = $h[0] & chr(0xFC);
$h = strrev($h);
$h[0] = "\0";
$h[1] = $h[1] | chr(0x80);
// 3. Interpret the buffer as the little-endian integer, forming a
// secret scalar s.
$dA = new BigInteger($h, 256);
return [
'dA' => $dA,
'secret' => $str
];
$dA->secret = $str;
return $dA;
}
/**
* Encode a point as a string
*
* @param array $point
* @return string
*/
public function encodePoint($point)
{
list($x, $y) = $point;
$y = "\0" . $y->toBytes();
if ($x->isOdd()) {
$y[0] = $y[0] | chr(0x80);
}
$y = strrev($y);
return $y;
}
/**
* Creates a random scalar multiplier
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function createRandomMultiplier()
{
return $this->extractSecret(Random::string(57))['dA'];
}
/**
* Converts an affine point to an extended homogeneous coordinate
*
* From https://tools.ietf.org/html/rfc8032#section-5.2.4 :
*
* A point (x,y) is represented in extended homogeneous coordinates (X, Y, Z, T),
* with x = X/Z, y = Y/Z, x * y = T/Z.
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (empty($p)) {
return [clone $this->zero, clone $this->one, clone $this->one];
}
if (isset($p[2])) {
return $p;
}
$p[2] = clone $this->one;
return $p;
}
/**
* Doubles a point on a curve
*
* @return FiniteField[]
*/
public function doublePoint(array $p)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p)) {
return [];
}
if (!isset($p[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
// from https://tools.ietf.org/html/rfc8032#page-18
list($x1, $y1, $z1) = $p;
$b = $x1->add($y1);
$b = $b->multiply($b);
$c = $x1->multiply($x1);
$d = $y1->multiply($y1);
$e = $c->add($d);
$h = $z1->multiply($z1);
$j = $e->subtract($this->two->multiply($h));
$x3 = $b->subtract($e)->multiply($j);
$y3 = $c->subtract($d)->multiply($e);
$z3 = $e->multiply($j);
return [$x3, $y3, $z3];
}
/**
* Adds two points on the curve
*
* @return FiniteField[]
*/
public function addPoint(array $p, array $q)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
if (count($q)) {
return $q;
}
if (count($p)) {
return $p;
}
return [];
}
if (!isset($p[2]) || !isset($q[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
if ($p[0]->equals($q[0])) {
return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
}
// from https://tools.ietf.org/html/rfc8032#page-17
list($x1, $y1, $z1) = $p;
list($x2, $y2, $z2) = $q;
$a = $z1->multiply($z2);
$b = $a->multiply($a);
$c = $x1->multiply($x2);
$d = $y1->multiply($y2);
$e = $this->d->multiply($c)->multiply($d);
$f = $b->subtract($e);
$g = $b->add($e);
$h = $x1->add($y1)->multiply($x2->add($y2));
$x3 = $a->multiply($f)->multiply($h->subtract($c)->subtract($d));
$y3 = $a->multiply($g)->multiply($d->subtract($c));
$z3 = $f->multiply($g);
return [$x3, $y3, $z3];
}
}
Welcome to the Kueue Pay Payment Gateway Solutions Developer API Documentation. This comprehensive guide will empower you to seamlessly integrate our advanced payment gateway into your website, enhancing your customers’ payment experience and enabling efficient transaction processing. The Kueue Pay Developer API is designed for developers and entrepreneurs who seek simplicity, security, and reliability in their payment processing solutions.
The Kueue Pay Developer API allows you to seamlessly integrate Kueue Pay’s Payment Gateway Solutions into your website, enabling secure and efficient debit and credit card transactions. With our API, you can initiate payments, check payment statuses, and even process refunds, all while ensuring a smooth and streamlined payment experience for your customers.