/home/kueuepay/www/vendor/phpseclib/phpseclib/phpseclib/Crypt/EC/BaseCurves/KoblitzPrime.php
<?php

/**
 * Generalized Koblitz Curves over y^2 = x^3 + b.
 *
 * According to http://www.secg.org/SEC2-Ver-1.0.pdf Koblitz curves are over the GF(2**m)
 * finite field. Both the $a$ and $b$ coefficients are either 0 or 1. However, SEC2
 * generalizes the definition to include curves over GF(P) "which possess an efficiently
 * computable endomorphism".
 *
 * For these generalized Koblitz curves $b$ doesn't have to be 0 or 1. Whether or not $a$
 * has any restrictions on it is unclear, however, for all the GF(P) Koblitz curves defined
 * in SEC2 v1.0 $a$ is $0$ so all of the methods defined herein will assume that it is.
 *
 * I suppose we could rename the $b$ coefficient to $a$, however, the documentation refers
 * to $b$ so we'll just keep it.
 *
 * If a later version of SEC2 comes out wherein some $a$ values are non-zero we can create a
 * new method for those. eg. KoblitzA1Prime.php or something.
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <terrafrost@php.net>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 * @link      http://pear.php.net/package/Math_BigInteger
 */

namespace phpseclib3\Crypt\EC\BaseCurves;

use phpseclib3\Math\BigInteger;
use phpseclib3\Math\PrimeField;

/**
 * Curves over y^2 = x^3 + b
 *
 * @author  Jim Wigginton <terrafrost@php.net>
 */
class KoblitzPrime extends Prime
{
    /**
     * Basis
     *
     * @var list<array{a: BigInteger, b: BigInteger}>
     */
    protected $basis;

    /**
     * Beta
     *
     * @var PrimeField\Integer
     */
    protected $beta;

    // don't overwrite setCoefficients() with one that only accepts one parameter so that
    // one might be able to switch between KoblitzPrime and Prime more easily (for benchmarking
    // purposes).

    /**
     * Multiply and Add Points
     *
     * Uses a efficiently computable endomorphism to achieve a slight speedup
     *
     * Adapted from:
     * https://github.com/indutny/elliptic/blob/725bd91/lib/elliptic/curve/short.js#L219
     *
     * @return int[]
     */
    public function multiplyAddPoints(array $points, array $scalars)
    {
        static $zero, $one, $two;
        if (!isset($two)) {
            $two = new BigInteger(2);
            $one = new BigInteger(1);
        }

        if (!isset($this->beta)) {
            // get roots
            $inv = $this->one->divide($this->two)->negate();
            $s = $this->three->negate()->squareRoot()->multiply($inv);
            $betas = [
                $inv->add($s),
                $inv->subtract($s)
            ];
            $this->beta = $betas[0]->compare($betas[1]) < 0 ? $betas[0] : $betas[1];
            //echo strtoupper($this->beta->toHex(true)) . "\n"; exit;
        }

        if (!isset($this->basis)) {
            $factory = new PrimeField($this->order);
            $tempOne = $factory->newInteger($one);
            $tempTwo = $factory->newInteger($two);
            $tempThree = $factory->newInteger(new BigInteger(3));

            $inv = $tempOne->divide($tempTwo)->negate();
            $s = $tempThree->negate()->squareRoot()->multiply($inv);

            $lambdas = [
                $inv->add($s),
                $inv->subtract($s)
            ];

            $lhs = $this->multiplyPoint($this->p, $lambdas[0])[0];
            $rhs = $this->p[0]->multiply($this->beta);
            $lambda = $lhs->equals($rhs) ? $lambdas[0] : $lambdas[1];

            $this->basis = static::extendedGCD($lambda->toBigInteger(), $this->order);
            ///*
            foreach ($this->basis as $basis) {
                echo strtoupper($basis['a']->toHex(true)) . "\n";
                echo strtoupper($basis['b']->toHex(true)) . "\n\n";
            }
            exit;
            //*/
        }

        $npoints = $nscalars = [];
        for ($i = 0; $i < count($points); $i++) {
            $p = $points[$i];
            $k = $scalars[$i]->toBigInteger();

            // begin split
            list($v1, $v2) = $this->basis;

            $c1 = $v2['b']->multiply($k);
            list($c1, $r) = $c1->divide($this->order);
            if ($this->order->compare($r->multiply($two)) <= 0) {
                $c1 = $c1->add($one);
            }

            $c2 = $v1['b']->negate()->multiply($k);
            list($c2, $r) = $c2->divide($this->order);
            if ($this->order->compare($r->multiply($two)) <= 0) {
                $c2 = $c2->add($one);
            }

            $p1 = $c1->multiply($v1['a']);
            $p2 = $c2->multiply($v2['a']);
            $q1 = $c1->multiply($v1['b']);
            $q2 = $c2->multiply($v2['b']);

            $k1 = $k->subtract($p1)->subtract($p2);
            $k2 = $q1->add($q2)->negate();
            // end split

            $beta = [
                $p[0]->multiply($this->beta),
                $p[1],
                clone $this->one
            ];

            if (isset($p['naf'])) {
                $beta['naf'] = array_map(function ($p) {
                    return [
                        $p[0]->multiply($this->beta),
                        $p[1],
                        clone $this->one
                    ];
                }, $p['naf']);
                $beta['nafwidth'] = $p['nafwidth'];
            }

            if ($k1->isNegative()) {
                $k1 = $k1->negate();
                $p = $this->negatePoint($p);
            }

            if ($k2->isNegative()) {
                $k2 = $k2->negate();
                $beta = $this->negatePoint($beta);
            }

            $pos = 2 * $i;
            $npoints[$pos] = $p;
            $nscalars[$pos] = $this->factory->newInteger($k1);

            $pos++;
            $npoints[$pos] = $beta;
            $nscalars[$pos] = $this->factory->newInteger($k2);
        }

        return parent::multiplyAddPoints($npoints, $nscalars);
    }

    /**
     * Returns the numerator and denominator of the slope
     *
     * @return FiniteField[]
     */
    protected function doublePointHelper(array $p)
    {
        $numerator = $this->three->multiply($p[0])->multiply($p[0]);
        $denominator = $this->two->multiply($p[1]);
        return [$numerator, $denominator];
    }

    /**
     * Doubles a jacobian coordinate on the curve
     *
     * See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
     *
     * @return FiniteField[]
     */
    protected function jacobianDoublePoint(array $p)
    {
        list($x1, $y1, $z1) = $p;
        $a = $x1->multiply($x1);
        $b = $y1->multiply($y1);
        $c = $b->multiply($b);
        $d = $x1->add($b);
        $d = $d->multiply($d)->subtract($a)->subtract($c)->multiply($this->two);
        $e = $this->three->multiply($a);
        $f = $e->multiply($e);
        $x3 = $f->subtract($this->two->multiply($d));
        $y3 = $e->multiply($d->subtract($x3))->subtract(
            $this->eight->multiply($c)
        );
        $z3 = $this->two->multiply($y1)->multiply($z1);
        return [$x3, $y3, $z3];
    }

    /**
     * Doubles a "fresh" jacobian coordinate on the curve
     *
     * See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
     *
     * @return FiniteField[]
     */
    protected function jacobianDoublePointMixed(array $p)
    {
        list($x1, $y1) = $p;
        $xx = $x1->multiply($x1);
        $yy = $y1->multiply($y1);
        $yyyy = $yy->multiply($yy);
        $s = $x1->add($yy);
        $s = $s->multiply($s)->subtract($xx)->subtract($yyyy)->multiply($this->two);
        $m = $this->three->multiply($xx);
        $t = $m->multiply($m)->subtract($this->two->multiply($s));
        $x3 = $t;
        $y3 = $s->subtract($t);
        $y3 = $m->multiply($y3)->subtract($this->eight->multiply($yyyy));
        $z3 = $this->two->multiply($y1);
        return [$x3, $y3, $z3];
    }

    /**
     * Tests whether or not the x / y values satisfy the equation
     *
     * @return boolean
     */
    public function verifyPoint(array $p)
    {
        list($x, $y) = $p;
        $lhs = $y->multiply($y);
        $temp = $x->multiply($x)->multiply($x);
        $rhs = $temp->add($this->b);

        return $lhs->equals($rhs);
    }

    /**
     * Calculates the parameters needed from the Euclidean algorithm as discussed at
     * http://diamond.boisestate.edu/~liljanab/MATH308/GuideToECC.pdf#page=148
     *
     * @param BigInteger $u
     * @param BigInteger $v
     * @return BigInteger[]
     */
    protected static function extendedGCD(BigInteger $u, BigInteger $v)
    {
        $one = new BigInteger(1);
        $zero = new BigInteger();

        $a = clone $one;
        $b = clone $zero;
        $c = clone $zero;
        $d = clone $one;

        $stop = $v->bitwise_rightShift($v->getLength() >> 1);

        $a1 = clone $zero;
        $b1 = clone $zero;
        $a2 = clone $zero;
        $b2 = clone $zero;

        $postGreatestIndex = 0;

        while (!$v->equals($zero)) {
            list($q) = $u->divide($v);

            $temp = $u;
            $u = $v;
            $v = $temp->subtract($v->multiply($q));

            $temp = $a;
            $a = $c;
            $c = $temp->subtract($a->multiply($q));

            $temp = $b;
            $b = $d;
            $d = $temp->subtract($b->multiply($q));

            if ($v->compare($stop) > 0) {
                $a0 = $v;
                $b0 = $c;
            } else {
                $postGreatestIndex++;
            }

            if ($postGreatestIndex == 1) {
                $a1 = $v;
                $b1 = $c->negate();
            }

            if ($postGreatestIndex == 2) {
                $rhs = $a0->multiply($a0)->add($b0->multiply($b0));
                $lhs = $v->multiply($v)->add($b->multiply($b));
                if ($lhs->compare($rhs) <= 0) {
                    $a2 = $a0;
                    $b2 = $b0->negate();
                } else {
                    $a2 = $v;
                    $b2 = $c->negate();
                }

                break;
            }
        }

        return [
            ['a' => $a1, 'b' => $b1],
            ['a' => $a2, 'b' => $b2]
        ];
    }
}
Developer

Kueue Pay Payment Gateway Solutions Developer API Documentation

Welcome to the Kueue Pay Payment Gateway Solutions Developer API Documentation. This comprehensive guide will empower you to seamlessly integrate our advanced payment gateway into your website, enhancing your customers’ payment experience and enabling efficient transaction processing. The Kueue Pay Developer API is designed for developers and entrepreneurs who seek simplicity, security, and reliability in their payment processing solutions.

1. Introduction

The Kueue Pay Developer API allows you to seamlessly integrate Kueue Pay’s Payment Gateway Solutions into your website, enabling secure and efficient debit and credit card transactions. With our API, you can initiate payments, check payment statuses, and even process refunds, all while ensuring a smooth and streamlined payment experience for your customers.