<?php
/**
* BCMath BigInteger Engine
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Math\BigInteger\Engines;
use phpseclib3\Common\Functions\Strings;
use phpseclib3\Exception\BadConfigurationException;
/**
* BCMath Engine.
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class BCMath extends Engine
{
/**
* Can Bitwise operations be done fast?
*
* @see parent::bitwise_leftRotate()
* @see parent::bitwise_rightRotate()
*/
const FAST_BITWISE = false;
/**
* Engine Directory
*
* @see parent::setModExpEngine
*/
const ENGINE_DIR = 'BCMath';
/**
* Test for engine validity
*
* @return bool
* @see parent::__construct()
*/
public static function isValidEngine()
{
return extension_loaded('bcmath');
}
/**
* Default constructor
*
* @param mixed $x integer Base-10 number or base-$base number if $base set.
* @param int $base
* @see parent::__construct()
*/
public function __construct($x = 0, $base = 10)
{
if (!isset(static::$isValidEngine[static::class])) {
static::$isValidEngine[static::class] = self::isValidEngine();
}
if (!static::$isValidEngine[static::class]) {
throw new BadConfigurationException('BCMath is not setup correctly on this system');
}
$this->value = '0';
parent::__construct($x, $base);
}
/**
* Initialize a BCMath BigInteger Engine instance
*
* @param int $base
* @see parent::__construct()
*/
protected function initialize($base)
{
switch (abs($base)) {
case 256:
// round $len to the nearest 4
$len = (strlen($this->value) + 3) & ~3;
$x = str_pad($this->value, $len, chr(0), STR_PAD_LEFT);
$this->value = '0';
for ($i = 0; $i < $len; $i += 4) {
$this->value = bcmul($this->value, '4294967296', 0); // 4294967296 == 2**32
$this->value = bcadd(
$this->value,
0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord(
$x[$i + 2]
) << 8) | ord($x[$i + 3])),
0
);
}
if ($this->is_negative) {
$this->value = '-' . $this->value;
}
break;
case 16:
$x = (strlen($this->value) & 1) ? '0' . $this->value : $this->value;
$temp = new self(Strings::hex2bin($x), 256);
$this->value = $this->is_negative ? '-' . $temp->value : $temp->value;
$this->is_negative = false;
break;
case 10:
// explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different
// results then doing it on '-1' does (modInverse does $x[0])
$this->value = $this->value === '-' ? '0' : (string)$this->value;
}
}
/**
* Converts a BigInteger to a base-10 number.
*
* @return string
*/
public function toString()
{
if ($this->value === '0') {
return '0';
}
return ltrim($this->value, '0');
}
/**
* Converts a BigInteger to a byte string (eg. base-256).
*
* @param bool $twos_compliment
* @return string
*/
public function toBytes($twos_compliment = false)
{
if ($twos_compliment) {
return $this->toBytesHelper();
}
$value = '';
$current = $this->value;
if ($current[0] == '-') {
$current = substr($current, 1);
}
while (bccomp($current, '0', 0) > 0) {
$temp = bcmod($current, '16777216');
$value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value;
$current = bcdiv($current, '16777216', 0);
}
return $this->precision > 0 ?
substr(str_pad($value, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
ltrim($value, chr(0));
}
/**
* Adds two BigIntegers.
*
* @param BCMath $y
* @return BCMath
*/
public function add(BCMath $y)
{
$temp = new self();
$temp->value = bcadd($this->value, $y->value);
return $this->normalize($temp);
}
/**
* Subtracts two BigIntegers.
*
* @param BCMath $y
* @return BCMath
*/
public function subtract(BCMath $y)
{
$temp = new self();
$temp->value = bcsub($this->value, $y->value);
return $this->normalize($temp);
}
/**
* Multiplies two BigIntegers.
*
* @param BCMath $x
* @return BCMath
*/
public function multiply(BCMath $x)
{
$temp = new self();
$temp->value = bcmul($this->value, $x->value);
return $this->normalize($temp);
}
/**
* Divides two BigIntegers.
*
* Returns an array whose first element contains the quotient and whose second element contains the
* "common residue". If the remainder would be positive, the "common residue" and the remainder are the
* same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder
* and the divisor (basically, the "common residue" is the first positive modulo).
*
* @param BCMath $y
* @return array{static, static}
*/
public function divide(BCMath $y)
{
$quotient = new self();
$remainder = new self();
$quotient->value = bcdiv($this->value, $y->value, 0);
$remainder->value = bcmod($this->value, $y->value);
if ($remainder->value[0] == '-') {
$remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value, 0);
}
return [$this->normalize($quotient), $this->normalize($remainder)];
}
/**
* Calculates modular inverses.
*
* Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses.
*
* @param BCMath $n
* @return false|BCMath
*/
public function modInverse(BCMath $n)
{
return $this->modInverseHelper($n);
}
/**
* Calculates the greatest common divisor and Bezout's identity.
*
* Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that
* 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which
* combination is returned is dependent upon which mode is in use. See
* {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information.
*
* @param BCMath $n
* @return array{gcd: static, x: static, y: static}
*/
public function extendedGCD(BCMath $n)
{
// it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works
// best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is,
// the basic extended euclidean algorithim is what we're using.
$u = $this->value;
$v = $n->value;
$a = '1';
$b = '0';
$c = '0';
$d = '1';
while (bccomp($v, '0', 0) != 0) {
$q = bcdiv($u, $v, 0);
$temp = $u;
$u = $v;
$v = bcsub($temp, bcmul($v, $q, 0), 0);
$temp = $a;
$a = $c;
$c = bcsub($temp, bcmul($a, $q, 0), 0);
$temp = $b;
$b = $d;
$d = bcsub($temp, bcmul($b, $q, 0), 0);
}
return [
'gcd' => $this->normalize(new static($u)),
'x' => $this->normalize(new static($a)),
'y' => $this->normalize(new static($b))
];
}
/**
* Calculates the greatest common divisor
*
* Say you have 693 and 609. The GCD is 21.
*
* @param BCMath $n
* @return BCMath
*/
public function gcd(BCMath $n)
{
extract($this->extendedGCD($n));
/** @var BCMath $gcd */
return $gcd;
}
/**
* Absolute value.
*
* @return BCMath
*/
public function abs()
{
$temp = new static();
$temp->value = strlen($this->value) && $this->value[0] == '-' ?
substr($this->value, 1) :
$this->value;
return $temp;
}
/**
* Logical And
*
* @param BCMath $x
* @return BCMath
*/
public function bitwise_and(BCMath $x)
{
return $this->bitwiseAndHelper($x);
}
/**
* Logical Or
*
* @param BCMath $x
* @return BCMath
*/
public function bitwise_or(BCMath $x)
{
return $this->bitwiseXorHelper($x);
}
/**
* Logical Exclusive Or
*
* @param BCMath $x
* @return BCMath
*/
public function bitwise_xor(BCMath $x)
{
return $this->bitwiseXorHelper($x);
}
/**
* Logical Right Shift
*
* Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
*
* @param int $shift
* @return BCMath
*/
public function bitwise_rightShift($shift)
{
$temp = new static();
$temp->value = bcdiv($this->value, bcpow('2', $shift, 0), 0);
return $this->normalize($temp);
}
/**
* Logical Left Shift
*
* Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
*
* @param int $shift
* @return BCMath
*/
public function bitwise_leftShift($shift)
{
$temp = new static();
$temp->value = bcmul($this->value, bcpow('2', $shift, 0), 0);
return $this->normalize($temp);
}
/**
* Compares two numbers.
*
* Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this
* is demonstrated thusly:
*
* $x > $y: $x->compare($y) > 0
* $x < $y: $x->compare($y) < 0
* $x == $y: $x->compare($y) == 0
*
* Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y).
*
* {@internal Could return $this->subtract($x), but that's not as fast as what we do do.}
*
* @param BCMath $y
* @return int in case < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal.
* @see self::equals()
*/
public function compare(BCMath $y)
{
return bccomp($this->value, $y->value, 0);
}
/**
* Tests the equality of two numbers.
*
* If you need to see if one number is greater than or less than another number, use BigInteger::compare()
*
* @param BCMath $x
* @return bool
*/
public function equals(BCMath $x)
{
return $this->value == $x->value;
}
/**
* Performs modular exponentiation.
*
* @param BCMath $e
* @param BCMath $n
* @return BCMath
*/
public function modPow(BCMath $e, BCMath $n)
{
return $this->powModOuter($e, $n);
}
/**
* Performs modular exponentiation.
*
* Alias for modPow().
*
* @param BCMath $e
* @param BCMath $n
* @return BCMath
*/
public function powMod(BCMath $e, BCMath $n)
{
return $this->powModOuter($e, $n);
}
/**
* Performs modular exponentiation.
*
* @param BCMath $e
* @param BCMath $n
* @return BCMath
*/
protected function powModInner(BCMath $e, BCMath $n)
{
try {
$class = static::$modexpEngine[static::class];
return $class::powModHelper($this, $e, $n, static::class);
} catch (\Exception $err) {
return BCMath\DefaultEngine::powModHelper($this, $e, $n, static::class);
}
}
/**
* Normalize
*
* Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
*
* @param BCMath $result
* @return BCMath
*/
protected function normalize(BCMath $result)
{
$result->precision = $this->precision;
$result->bitmask = $this->bitmask;
if ($result->bitmask !== false) {
$result->value = bcmod($result->value, $result->bitmask->value);
}
return $result;
}
/**
* Generate a random prime number between a range
*
* If there's not a prime within the given range, false will be returned.
*
* @param BCMath $min
* @param BCMath $max
* @return false|BCMath
*/
public static function randomRangePrime(BCMath $min, BCMath $max)
{
return self::randomRangePrimeOuter($min, $max);
}
/**
* Generate a random number between a range
*
* Returns a random number between $min and $max where $min and $max
* can be defined using one of the two methods:
*
* BigInteger::randomRange($min, $max)
* BigInteger::randomRange($max, $min)
*
* @param BCMath $min
* @param BCMath $max
* @return BCMath
*/
public static function randomRange(BCMath $min, BCMath $max)
{
return self::randomRangeHelper($min, $max);
}
/**
* Make the current number odd
*
* If the current number is odd it'll be unchanged. If it's even, one will be added to it.
*
* @see self::randomPrime()
*/
protected function make_odd()
{
if (!$this->isOdd()) {
$this->value = bcadd($this->value, '1');
}
}
/**
* Test the number against small primes.
*
* @see self::isPrime()
*/
protected function testSmallPrimes()
{
if ($this->value === '1') {
return false;
}
if ($this->value === '2') {
return true;
}
if ($this->value[strlen($this->value) - 1] % 2 == 0) {
return false;
}
$value = $this->value;
foreach (self::PRIMES as $prime) {
$r = bcmod($this->value, $prime);
if ($r == '0') {
return $this->value == $prime;
}
}
return true;
}
/**
* Scan for 1 and right shift by that amount
*
* ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s));
*
* @param BCMath $r
* @return int
* @see self::isPrime()
*/
public static function scan1divide(BCMath $r)
{
$r_value = &$r->value;
$s = 0;
// if $n was 1, $r would be 0 and this would be an infinite loop, hence our $this->equals(static::$one[static::class]) check earlier
while ($r_value[strlen($r_value) - 1] % 2 == 0) {
$r_value = bcdiv($r_value, '2', 0);
++$s;
}
return $s;
}
/**
* Performs exponentiation.
*
* @param BCMath $n
* @return BCMath
*/
public function pow(BCMath $n)
{
$temp = new self();
$temp->value = bcpow($this->value, $n->value);
return $this->normalize($temp);
}
/**
* Return the minimum BigInteger between an arbitrary number of BigIntegers.
*
* @param BCMath ...$nums
* @return BCMath
*/
public static function min(BCMath ...$nums)
{
return self::minHelper($nums);
}
/**
* Return the maximum BigInteger between an arbitrary number of BigIntegers.
*
* @param BCMath ...$nums
* @return BCMath
*/
public static function max(BCMath ...$nums)
{
return self::maxHelper($nums);
}
/**
* Tests BigInteger to see if it is between two integers, inclusive
*
* @param BCMath $min
* @param BCMath $max
* @return bool
*/
public function between(BCMath $min, BCMath $max)
{
return $this->compare($min) >= 0 && $this->compare($max) <= 0;
}
/**
* Set Bitmask
*
* @param int $bits
* @return Engine
* @see self::setPrecision()
*/
protected static function setBitmask($bits)
{
$temp = parent::setBitmask($bits);
return $temp->add(static::$one[static::class]);
}
/**
* Is Odd?
*
* @return bool
*/
public function isOdd()
{
return $this->value[strlen($this->value) - 1] % 2 == 1;
}
/**
* Tests if a bit is set
*
* @return bool
*/
public function testBit($x)
{
return bccomp(
bcmod($this->value, bcpow('2', $x + 1, 0)),
bcpow('2', $x, 0),
0
) >= 0;
}
/**
* Is Negative?
*
* @return bool
*/
public function isNegative()
{
return strlen($this->value) && $this->value[0] == '-';
}
/**
* Negate
*
* Given $k, returns -$k
*
* @return BCMath
*/
public function negate()
{
$temp = clone $this;
if (!strlen($temp->value)) {
return $temp;
}
$temp->value = $temp->value[0] == '-' ?
substr($this->value, 1) :
'-' . $this->value;
return $temp;
}
}
The Kueue Pay Payment Gateway is an innovative technology that facilitates seamless and secure transactions between merchants and their customers. It enables businesses to accept debit and credit card payments both online and in physical stores.
The Kueue Pay Payment Gateway acts as a bridge between a merchant’s website or point-of-sale system and the payment processing network. It securely transmits payment information, authorizes transactions, and provides real-time status updates.
The Kueue Pay Developer API empowers developers and entrepreneurs to integrate the Kueue Pay Payment Gateway directly into their websites or applications. This streamlines the payment process for customers and provides businesses with a customizable and efficient payment solution.
To access the Kueue Pay Developer API, you need to sign up for a developer account on our platform. Once registered, you’ll receive an API key that you can use to authenticate your API requests.
The Kueue Pay Developer API allows you to initiate payments, check the status of payments, and process refunds. You can create a seamless payment experience for your customers while maintaining control over transaction management.
Yes, the Kueue Pay Developer API is designed to accommodate businesses of varying sizes and industries. Whether you’re a small online store or a large enterprise, our API can be tailored to fit your specific payment needs.
The Kueue Pay Developer API is designed with simplicity and ease of use in mind. Our comprehensive documentation, code samples, and developer support resources ensure a smooth integration process for any web platform.
We offer competitive pricing plans for using the Kueue Pay Payment Gateway and Developer API. Details about fees and pricing tiers can be found on our developer portal.
Absolutely, the Kueue Pay Developer API offers customization options that allow you to tailor the payment experience to match your brand and user interface. You can create a seamless and cohesive payment journey for your customers.
We provide dedicated developer support to assist you with any issues or questions you may have during the API integration process. Reach out to our support team at developersupport@NFCPay.com for prompt assistance.
Remember, our goal is to empower your business with a robust and efficient payment solution. If you have any additional questions or concerns, feel free to explore our developer portal or contact our support team.