/home/kueuepay/public_html/vendor/phpseclib/phpseclib/phpseclib/Math/BinaryField/Integer.php
<?php

/**
 * Binary Finite Fields
 *
 * In a binary finite field numbers are actually polynomial equations. If you
 * represent the number as a sequence of bits you get a sequence of 1's or 0's.
 * These 1's or 0's represent the coefficients of the x**n, where n is the
 * location of the given bit. When you add numbers over a binary finite field
 * the result should have a coefficient of 1 or 0 as well. Hence addition
 * and subtraction become the same operation as XOR.
 * eg. 1 + 1 + 1 == 3 % 2 == 1 or 0 - 1 == -1 % 2 == 1
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <terrafrost@php.net>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 */

namespace phpseclib3\Math\BinaryField;

use phpseclib3\Common\Functions\Strings;
use phpseclib3\Math\BigInteger;
use phpseclib3\Math\BinaryField;
use phpseclib3\Math\Common\FiniteField\Integer as Base;

/**
 * Binary Finite Fields
 *
 * @author  Jim Wigginton <terrafrost@php.net>
 */
class Integer extends Base
{
    /**
     * Holds the BinaryField's value
     *
     * @var string
     */
    protected $value;

    /**
     * Keeps track of current instance
     *
     * @var int
     */
    protected $instanceID;

    /**
     * Holds the PrimeField's modulo
     *
     * @var array<int, string>
     */
    protected static $modulo;

    /**
     * Holds a pre-generated function to perform modulo reductions
     *
     * @var callable[]
     */
    protected static $reduce;

    /**
     * Default constructor
     */
    public function __construct($instanceID, $num = '')
    {
        $this->instanceID = $instanceID;
        if (!strlen($num)) {
            $this->value = '';
        } else {
            $reduce = static::$reduce[$instanceID];
            $this->value = $reduce($num);
        }
    }

    /**
     * Set the modulo for a given instance
     * @param int $instanceID
     * @param string $modulo
     */
    public static function setModulo($instanceID, $modulo)
    {
        static::$modulo[$instanceID] = $modulo;
    }

    /**
     * Set the modulo for a given instance
     */
    public static function setRecurringModuloFunction($instanceID, callable $function)
    {
        static::$reduce[$instanceID] = $function;
    }

    /**
     * Tests a parameter to see if it's of the right instance
     *
     * Throws an exception if the incorrect class is being utilized
     */
    private static function checkInstance(self $x, self $y)
    {
        if ($x->instanceID != $y->instanceID) {
            throw new \UnexpectedValueException('The instances of the two BinaryField\Integer objects do not match');
        }
    }

    /**
     * Tests the equality of two numbers.
     *
     * @return bool
     */
    public function equals(self $x)
    {
        static::checkInstance($this, $x);

        return $this->value == $x->value;
    }

    /**
     * Compares two numbers.
     *
     * @return int
     */
    public function compare(self $x)
    {
        static::checkInstance($this, $x);

        $a = $this->value;
        $b = $x->value;

        $length = max(strlen($a), strlen($b));

        $a = str_pad($a, $length, "\0", STR_PAD_LEFT);
        $b = str_pad($b, $length, "\0", STR_PAD_LEFT);

        return strcmp($a, $b);
    }

    /**
     * Returns the degree of the polynomial
     *
     * @param string $x
     * @return int
     */
    private static function deg($x)
    {
        $x = ltrim($x, "\0");
        $xbit = decbin(ord($x[0]));
        $xlen = $xbit == '0' ? 0 : strlen($xbit);
        $len = strlen($x);
        if (!$len) {
            return -1;
        }
        return 8 * strlen($x) - 9 + $xlen;
    }

    /**
     * Perform polynomial division
     *
     * @return string[]
     * @link https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#Euclidean_division
     */
    private static function polynomialDivide($x, $y)
    {
        // in wikipedia's description of the algorithm, lc() is the leading coefficient. over a binary field that's
        // always going to be 1.

        $q = chr(0);
        $d = static::deg($y);
        $r = $x;
        while (($degr = static::deg($r)) >= $d) {
            $s = '1' . str_repeat('0', $degr - $d);
            $s = BinaryField::base2ToBase256($s);
            $length = max(strlen($s), strlen($q));
            $q = !isset($q) ? $s :
                str_pad($q, $length, "\0", STR_PAD_LEFT) ^
                str_pad($s, $length, "\0", STR_PAD_LEFT);
            $s = static::polynomialMultiply($s, $y);
            $length = max(strlen($r), strlen($s));
            $r = str_pad($r, $length, "\0", STR_PAD_LEFT) ^
                 str_pad($s, $length, "\0", STR_PAD_LEFT);
        }

        return [ltrim($q, "\0"), ltrim($r, "\0")];
    }

    /**
     * Perform polynomial multiplation in the traditional way
     *
     * @return string
     * @link https://en.wikipedia.org/wiki/Finite_field_arithmetic#Multiplication
     */
    private static function regularPolynomialMultiply($x, $y)
    {
        $precomputed = [ltrim($x, "\0")];
        $x = strrev(BinaryField::base256ToBase2($x));
        $y = strrev(BinaryField::base256ToBase2($y));
        if (strlen($x) == strlen($y)) {
            $length = strlen($x);
        } else {
            $length = max(strlen($x), strlen($y));
            $x = str_pad($x, $length, '0');
            $y = str_pad($y, $length, '0');
        }
        $result = str_repeat('0', 2 * $length - 1);
        $result = BinaryField::base2ToBase256($result);
        $size = strlen($result);
        $x = strrev($x);

        // precompute left shift 1 through 7
        for ($i = 1; $i < 8; $i++) {
            $precomputed[$i] = BinaryField::base2ToBase256($x . str_repeat('0', $i));
        }
        for ($i = 0; $i < strlen($y); $i++) {
            if ($y[$i] == '1') {
                $temp = $precomputed[$i & 7] . str_repeat("\0", $i >> 3);
                $result ^= str_pad($temp, $size, "\0", STR_PAD_LEFT);
            }
        }

        return $result;
    }

    /**
     * Perform polynomial multiplation
     *
     * Uses karatsuba multiplication to reduce x-bit multiplications to a series of 32-bit multiplications
     *
     * @return string
     * @link https://en.wikipedia.org/wiki/Karatsuba_algorithm
     */
    private static function polynomialMultiply($x, $y)
    {
        if (strlen($x) == strlen($y)) {
            $length = strlen($x);
        } else {
            $length = max(strlen($x), strlen($y));
            $x = str_pad($x, $length, "\0", STR_PAD_LEFT);
            $y = str_pad($y, $length, "\0", STR_PAD_LEFT);
        }

        switch (true) {
            case PHP_INT_SIZE == 8 && $length <= 4:
                return $length != 4 ?
                    self::subMultiply(str_pad($x, 4, "\0", STR_PAD_LEFT), str_pad($y, 4, "\0", STR_PAD_LEFT)) :
                    self::subMultiply($x, $y);
            case PHP_INT_SIZE == 4 || $length > 32:
                return self::regularPolynomialMultiply($x, $y);
        }

        $m = $length >> 1;

        $x1 = substr($x, 0, -$m);
        $x0 = substr($x, -$m);
        $y1 = substr($y, 0, -$m);
        $y0 = substr($y, -$m);

        $z2 = self::polynomialMultiply($x1, $y1);
        $z0 = self::polynomialMultiply($x0, $y0);
        $z1 = self::polynomialMultiply(
            self::subAdd2($x1, $x0),
            self::subAdd2($y1, $y0)
        );

        $z1 = self::subAdd3($z1, $z2, $z0);

        $xy = self::subAdd3(
            $z2 . str_repeat("\0", 2 * $m),
            $z1 . str_repeat("\0", $m),
            $z0
        );

        return ltrim($xy, "\0");
    }

    /**
     * Perform polynomial multiplication on 2x 32-bit numbers, returning
     * a 64-bit number
     *
     * @param string $x
     * @param string $y
     * @return string
     * @link https://www.bearssl.org/constanttime.html#ghash-for-gcm
     */
    private static function subMultiply($x, $y)
    {
        $x = unpack('N', $x)[1];
        $y = unpack('N', $y)[1];

        $x0 = $x & 0x11111111;
        $x1 = $x & 0x22222222;
        $x2 = $x & 0x44444444;
        $x3 = $x & 0x88888888;

        $y0 = $y & 0x11111111;
        $y1 = $y & 0x22222222;
        $y2 = $y & 0x44444444;
        $y3 = $y & 0x88888888;

        $z0 = ($x0 * $y0) ^ ($x1 * $y3) ^ ($x2 * $y2) ^ ($x3 * $y1);
        $z1 = ($x0 * $y1) ^ ($x1 * $y0) ^ ($x2 * $y3) ^ ($x3 * $y2);
        $z2 = ($x0 * $y2) ^ ($x1 * $y1) ^ ($x2 * $y0) ^ ($x3 * $y3);
        $z3 = ($x0 * $y3) ^ ($x1 * $y2) ^ ($x2 * $y1) ^ ($x3 * $y0);

        $z0 &= 0x1111111111111111;
        $z1 &= 0x2222222222222222;
        $z2 &= 0x4444444444444444;
        $z3 &= -8608480567731124088; // 0x8888888888888888 gets interpreted as a float

        $z = $z0 | $z1 | $z2 | $z3;

        return pack('J', $z);
    }

    /**
     * Adds two numbers
     *
     * @param string $x
     * @param string $y
     * @return string
     */
    private static function subAdd2($x, $y)
    {
        $length = max(strlen($x), strlen($y));
        $x = str_pad($x, $length, "\0", STR_PAD_LEFT);
        $y = str_pad($y, $length, "\0", STR_PAD_LEFT);
        return $x ^ $y;
    }

    /**
     * Adds three numbers
     *
     * @param string $x
     * @param string $y
     * @return string
     */
    private static function subAdd3($x, $y, $z)
    {
        $length = max(strlen($x), strlen($y), strlen($z));
        $x = str_pad($x, $length, "\0", STR_PAD_LEFT);
        $y = str_pad($y, $length, "\0", STR_PAD_LEFT);
        $z = str_pad($z, $length, "\0", STR_PAD_LEFT);
        return $x ^ $y ^ $z;
    }

    /**
     * Adds two BinaryFieldIntegers.
     *
     * @return static
     */
    public function add(self $y)
    {
        static::checkInstance($this, $y);

        $length = strlen(static::$modulo[$this->instanceID]);

        $x = str_pad($this->value, $length, "\0", STR_PAD_LEFT);
        $y = str_pad($y->value, $length, "\0", STR_PAD_LEFT);

        return new static($this->instanceID, $x ^ $y);
    }

    /**
     * Subtracts two BinaryFieldIntegers.
     *
     * @return static
     */
    public function subtract(self $x)
    {
        return $this->add($x);
    }

    /**
     * Multiplies two BinaryFieldIntegers.
     *
     * @return static
     */
    public function multiply(self $y)
    {
        static::checkInstance($this, $y);

        return new static($this->instanceID, static::polynomialMultiply($this->value, $y->value));
    }

    /**
     * Returns the modular inverse of a BinaryFieldInteger
     *
     * @return static
     */
    public function modInverse()
    {
        $remainder0 = static::$modulo[$this->instanceID];
        $remainder1 = $this->value;

        if ($remainder1 == '') {
            return new static($this->instanceID);
        }

        $aux0 = "\0";
        $aux1 = "\1";
        while ($remainder1 != "\1") {
            list($q, $r) = static::polynomialDivide($remainder0, $remainder1);
            $remainder0 = $remainder1;
            $remainder1 = $r;
            // the auxiliary in row n is given by the sum of the auxiliary in
            // row n-2 and the product of the quotient and the auxiliary in row
            // n-1
            $temp = static::polynomialMultiply($aux1, $q);
            $aux = str_pad($aux0, strlen($temp), "\0", STR_PAD_LEFT) ^
                   str_pad($temp, strlen($aux0), "\0", STR_PAD_LEFT);
            $aux0 = $aux1;
            $aux1 = $aux;
        }

        $temp = new static($this->instanceID);
        $temp->value = ltrim($aux1, "\0");
        return $temp;
    }

    /**
     * Divides two PrimeFieldIntegers.
     *
     * @return static
     */
    public function divide(self $x)
    {
        static::checkInstance($this, $x);

        $x = $x->modInverse();
        return $this->multiply($x);
    }

    /**
     * Negate
     *
     * A negative number can be written as 0-12. With modulos, 0 is the same thing as the modulo
     * so 0-12 is the same thing as modulo-12
     *
     * @return object
     */
    public function negate()
    {
        $x = str_pad($this->value, strlen(static::$modulo[$this->instanceID]), "\0", STR_PAD_LEFT);

        return new static($this->instanceID, $x ^ static::$modulo[$this->instanceID]);
    }

    /**
     * Returns the modulo
     *
     * @return string
     */
    public static function getModulo($instanceID)
    {
        return static::$modulo[$instanceID];
    }

    /**
     * Converts an Integer to a byte string (eg. base-256).
     *
     * @return string
     */
    public function toBytes()
    {
        return str_pad($this->value, strlen(static::$modulo[$this->instanceID]), "\0", STR_PAD_LEFT);
    }

    /**
     * Converts an Integer to a hex string (eg. base-16).
     *
     * @return string
     */
    public function toHex()
    {
        return Strings::bin2hex($this->toBytes());
    }

    /**
     * Converts an Integer to a bit string (eg. base-2).
     *
     * @return string
     */
    public function toBits()
    {
        //return str_pad(BinaryField::base256ToBase2($this->value), strlen(static::$modulo[$this->instanceID]), '0', STR_PAD_LEFT);
        return BinaryField::base256ToBase2($this->value);
    }

    /**
     * Converts an Integer to a BigInteger
     *
     * @return string
     */
    public function toBigInteger()
    {
        return new BigInteger($this->value, 256);
    }

    /**
     *  __toString() magic method
     *
     */
    public function __toString()
    {
        return (string) $this->toBigInteger();
    }

    /**
     *  __debugInfo() magic method
     *
     */
    public function __debugInfo()
    {
        return ['value' => $this->toHex()];
    }
}
FAQ

FAQ

1. What is the Kueue Pay Payment Gateway?

The Kueue Pay Payment Gateway is an innovative technology that facilitates seamless and secure transactions between merchants and their customers. It enables businesses to accept debit and credit card payments both online and in physical stores.

2. How does the Kueue Pay Payment Gateway work?

The Kueue Pay Payment Gateway acts as a bridge between a merchant’s website or point-of-sale system and the payment processing network. It securely transmits payment information, authorizes transactions, and provides real-time status updates.

3. What is the advantage of using Kueue Pay’s Developer API?

The Kueue Pay Developer API empowers developers and entrepreneurs to integrate the Kueue Pay Payment Gateway directly into their websites or applications. This streamlines the payment process for customers and provides businesses with a customizable and efficient payment solution.

4. How can I access the Kueue Pay Developer API?

To access the Kueue Pay Developer API, you need to sign up for a developer account on our platform. Once registered, you’ll receive an API key that you can use to authenticate your API requests.

5. What types of transactions can I handle with the Kueue Pay Developer API?

The Kueue Pay Developer API allows you to initiate payments, check the status of payments, and process refunds. You can create a seamless payment experience for your customers while maintaining control over transaction management.

6. Is the Kueue Pay Developer API suitable for my business size and industry?

Yes, the Kueue Pay Developer API is designed to accommodate businesses of varying sizes and industries. Whether you’re a small online store or a large enterprise, our API can be tailored to fit your specific payment needs.

7. How user-friendly is the Kueue Pay Developer API integration process?

The Kueue Pay Developer API is designed with simplicity and ease of use in mind. Our comprehensive documentation, code samples, and developer support resources ensure a smooth integration process for any web platform.

8. Are there any fees associated with using the Kueue Pay Payment Gateway and API?

We offer competitive pricing plans for using the Kueue Pay Payment Gateway and Developer API. Details about fees and pricing tiers can be found on our developer portal.

9. Can I customize the payment experience for my customers using the Kueue Pay API?

Absolutely, the Kueue Pay Developer API offers customization options that allow you to tailor the payment experience to match your brand and user interface. You can create a seamless and cohesive payment journey for your customers.

10. What kind of support is available if I encounter issues during API integration?

We provide dedicated developer support to assist you with any issues or questions you may have during the API integration process. Reach out to our support team at developersupport@NFCPay.com for prompt assistance.

Remember, our goal is to empower your business with a robust and efficient payment solution. If you have any additional questions or concerns, feel free to explore our developer portal or contact our support team.