/home/kueuepay/public_html/vendor/phpseclib/phpseclib/phpseclib/Math/BigInteger/Engines/GMP.php
<?php

/**
 * GMP BigInteger Engine
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <terrafrost@php.net>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 * @link      http://pear.php.net/package/Math_BigInteger
 */

namespace phpseclib3\Math\BigInteger\Engines;

use phpseclib3\Exception\BadConfigurationException;

/**
 * GMP Engine.
 *
 * @author  Jim Wigginton <terrafrost@php.net>
 */
class GMP extends Engine
{
    /**
     * Can Bitwise operations be done fast?
     *
     * @see parent::bitwise_leftRotate()
     * @see parent::bitwise_rightRotate()
     */
    const FAST_BITWISE = true;

    /**
     * Engine Directory
     *
     * @see parent::setModExpEngine
     */
    const ENGINE_DIR = 'GMP';

    /**
     * Test for engine validity
     *
     * @return bool
     * @see parent::__construct()
     */
    public static function isValidEngine()
    {
        return extension_loaded('gmp');
    }

    /**
     * Default constructor
     *
     * @param mixed $x integer Base-10 number or base-$base number if $base set.
     * @param int $base
     * @see parent::__construct()
     */
    public function __construct($x = 0, $base = 10)
    {
        if (!isset(static::$isValidEngine[static::class])) {
            static::$isValidEngine[static::class] = self::isValidEngine();
        }
        if (!static::$isValidEngine[static::class]) {
            throw new BadConfigurationException('GMP is not setup correctly on this system');
        }

        if ($x instanceof \GMP) {
            $this->value = $x;
            return;
        }

        $this->value = gmp_init(0);

        parent::__construct($x, $base);
    }

    /**
     * Initialize a GMP BigInteger Engine instance
     *
     * @param int $base
     * @see parent::__construct()
     */
    protected function initialize($base)
    {
        switch (abs($base)) {
            case 256:
                $this->value = gmp_import($this->value);
                if ($this->is_negative) {
                    $this->value = -$this->value;
                }
                break;
            case 16:
                $temp = $this->is_negative ? '-0x' . $this->value : '0x' . $this->value;
                $this->value = gmp_init($temp);
                break;
            case 10:
                $this->value = gmp_init(isset($this->value) ? $this->value : '0');
        }
    }

    /**
     * Converts a BigInteger to a base-10 number.
     *
     * @return string
     */
    public function toString()
    {
        return (string)$this->value;
    }

    /**
     * Converts a BigInteger to a bit string (eg. base-2).
     *
     * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
     * saved as two's compliment.
     *
     * @param bool $twos_compliment
     * @return string
     */
    public function toBits($twos_compliment = false)
    {
        $hex = $this->toHex($twos_compliment);

        $bits = gmp_strval(gmp_init($hex, 16), 2);

        if ($this->precision > 0) {
            $bits = substr($bits, -$this->precision);
        }

        if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) {
            return '0' . $bits;
        }

        return $bits;
    }

    /**
     * Converts a BigInteger to a byte string (eg. base-256).
     *
     * @param bool $twos_compliment
     * @return string
     */
    public function toBytes($twos_compliment = false)
    {
        if ($twos_compliment) {
            return $this->toBytesHelper();
        }

        if (gmp_cmp($this->value, gmp_init(0)) == 0) {
            return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
        }

        $temp = gmp_export($this->value);

        return $this->precision > 0 ?
            substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
            ltrim($temp, chr(0));
    }

    /**
     * Adds two BigIntegers.
     *
     * @param GMP $y
     * @return GMP
     */
    public function add(GMP $y)
    {
        $temp = new self();
        $temp->value = $this->value + $y->value;

        return $this->normalize($temp);
    }

    /**
     * Subtracts two BigIntegers.
     *
     * @param GMP $y
     * @return GMP
     */
    public function subtract(GMP $y)
    {
        $temp = new self();
        $temp->value = $this->value - $y->value;

        return $this->normalize($temp);
    }

    /**
     * Multiplies two BigIntegers.
     *
     * @param GMP $x
     * @return GMP
     */
    public function multiply(GMP $x)
    {
        $temp = new self();
        $temp->value = $this->value * $x->value;

        return $this->normalize($temp);
    }

    /**
     * Divides two BigIntegers.
     *
     * Returns an array whose first element contains the quotient and whose second element contains the
     * "common residue".  If the remainder would be positive, the "common residue" and the remainder are the
     * same.  If the remainder would be negative, the "common residue" is equal to the sum of the remainder
     * and the divisor (basically, the "common residue" is the first positive modulo).
     *
     * @param GMP $y
     * @return array{GMP, GMP}
     */
    public function divide(GMP $y)
    {
        $quotient = new self();
        $remainder = new self();

        list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value);

        if (gmp_sign($remainder->value) < 0) {
            $remainder->value = $remainder->value + gmp_abs($y->value);
        }

        return [$this->normalize($quotient), $this->normalize($remainder)];
    }

    /**
     * Compares two numbers.
     *
     * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite.  The reason for this
     * is demonstrated thusly:
     *
     * $x  > $y: $x->compare($y)  > 0
     * $x  < $y: $x->compare($y)  < 0
     * $x == $y: $x->compare($y) == 0
     *
     * Note how the same comparison operator is used.  If you want to test for equality, use $x->equals($y).
     *
     * {@internal Could return $this->subtract($x), but that's not as fast as what we do do.}
     *
     * @param GMP $y
     * @return int in case < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal.
     * @see self::equals()
     */
    public function compare(GMP $y)
    {
        $r = gmp_cmp($this->value, $y->value);
        if ($r < -1) {
            $r = -1;
        }
        if ($r > 1) {
            $r = 1;
        }
        return $r;
    }

    /**
     * Tests the equality of two numbers.
     *
     * If you need to see if one number is greater than or less than another number, use BigInteger::compare()
     *
     * @param GMP $x
     * @return bool
     */
    public function equals(GMP $x)
    {
        return $this->value == $x->value;
    }

    /**
     * Calculates modular inverses.
     *
     * Say you have (30 mod 17 * x mod 17) mod 17 == 1.  x can be found using modular inverses.
     *
     * @param GMP $n
     * @return false|GMP
     */
    public function modInverse(GMP $n)
    {
        $temp = new self();
        $temp->value = gmp_invert($this->value, $n->value);

        return $temp->value === false ? false : $this->normalize($temp);
    }

    /**
     * Calculates the greatest common divisor and Bezout's identity.
     *
     * Say you have 693 and 609.  The GCD is 21.  Bezout's identity states that there exist integers x and y such that
     * 693*x + 609*y == 21.  In point of fact, there are actually an infinite number of x and y combinations and which
     * combination is returned is dependent upon which mode is in use.  See
     * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information.
     *
     * @param GMP $n
     * @return GMP[]
     */
    public function extendedGCD(GMP $n)
    {
        extract(gmp_gcdext($this->value, $n->value));

        return [
            'gcd' => $this->normalize(new self($g)),
            'x' => $this->normalize(new self($s)),
            'y' => $this->normalize(new self($t))
        ];
    }

    /**
     * Calculates the greatest common divisor
     *
     * Say you have 693 and 609.  The GCD is 21.
     *
     * @param GMP $n
     * @return GMP
     */
    public function gcd(GMP $n)
    {
        $r = gmp_gcd($this->value, $n->value);
        return $this->normalize(new self($r));
    }

    /**
     * Absolute value.
     *
     * @return GMP
     */
    public function abs()
    {
        $temp = new self();
        $temp->value = gmp_abs($this->value);

        return $temp;
    }

    /**
     * Logical And
     *
     * @param GMP $x
     * @return GMP
     */
    public function bitwise_and(GMP $x)
    {
        $temp = new self();
        $temp->value = $this->value & $x->value;

        return $this->normalize($temp);
    }

    /**
     * Logical Or
     *
     * @param GMP $x
     * @return GMP
     */
    public function bitwise_or(GMP $x)
    {
        $temp = new self();
        $temp->value = $this->value | $x->value;

        return $this->normalize($temp);
    }

    /**
     * Logical Exclusive Or
     *
     * @param GMP $x
     * @return GMP
     */
    public function bitwise_xor(GMP $x)
    {
        $temp = new self();
        $temp->value = $this->value ^ $x->value;

        return $this->normalize($temp);
    }

    /**
     * Logical Right Shift
     *
     * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
     *
     * @param int $shift
     * @return GMP
     */
    public function bitwise_rightShift($shift)
    {
        // 0xFFFFFFFF >> 2 == -1 (on 32-bit systems)
        // gmp_init('0xFFFFFFFF') >> 2 == gmp_init('0x3FFFFFFF')

        $temp = new self();
        $temp->value = $this->value >> $shift;

        return $this->normalize($temp);
    }

    /**
     * Logical Left Shift
     *
     * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
     *
     * @param int $shift
     * @return GMP
     */
    public function bitwise_leftShift($shift)
    {
        $temp = new self();
        $temp->value = $this->value << $shift;

        return $this->normalize($temp);
    }

    /**
     * Performs modular exponentiation.
     *
     * @param GMP $e
     * @param GMP $n
     * @return GMP
     */
    public function modPow(GMP $e, GMP $n)
    {
        return $this->powModOuter($e, $n);
    }

    /**
     * Performs modular exponentiation.
     *
     * Alias for modPow().
     *
     * @param GMP $e
     * @param GMP $n
     * @return GMP
     */
    public function powMod(GMP $e, GMP $n)
    {
        return $this->powModOuter($e, $n);
    }

    /**
     * Performs modular exponentiation.
     *
     * @param GMP $e
     * @param GMP $n
     * @return GMP
     */
    protected function powModInner(GMP $e, GMP $n)
    {
        $class = static::$modexpEngine[static::class];
        return $class::powModHelper($this, $e, $n);
    }

    /**
     * Normalize
     *
     * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
     *
     * @param GMP $result
     * @return GMP
     */
    protected function normalize(GMP $result)
    {
        $result->precision = $this->precision;
        $result->bitmask = $this->bitmask;

        if ($result->bitmask !== false) {
            $flip = $result->value < 0;
            if ($flip) {
                $result->value = -$result->value;
            }
            $result->value = $result->value & $result->bitmask->value;
            if ($flip) {
                $result->value = -$result->value;
            }
        }

        return $result;
    }

    /**
     * Performs some post-processing for randomRangePrime
     *
     * @param Engine $x
     * @param Engine $min
     * @param Engine $max
     * @return GMP
     */
    protected static function randomRangePrimeInner(Engine $x, Engine $min, Engine $max)
    {
        $p = gmp_nextprime($x->value);

        if ($p <= $max->value) {
            return new self($p);
        }

        if ($min->value != $x->value) {
            $x = new self($x->value - 1);
        }

        return self::randomRangePrime($min, $x);
    }

    /**
     * Generate a random prime number between a range
     *
     * If there's not a prime within the given range, false will be returned.
     *
     * @param GMP $min
     * @param GMP $max
     * @return false|GMP
     */
    public static function randomRangePrime(GMP $min, GMP $max)
    {
        return self::randomRangePrimeOuter($min, $max);
    }

    /**
     * Generate a random number between a range
     *
     * Returns a random number between $min and $max where $min and $max
     * can be defined using one of the two methods:
     *
     * BigInteger::randomRange($min, $max)
     * BigInteger::randomRange($max, $min)
     *
     * @param GMP $min
     * @param GMP $max
     * @return GMP
     */
    public static function randomRange(GMP $min, GMP $max)
    {
        return self::randomRangeHelper($min, $max);
    }

    /**
     * Make the current number odd
     *
     * If the current number is odd it'll be unchanged.  If it's even, one will be added to it.
     *
     * @see self::randomPrime()
     */
    protected function make_odd()
    {
        gmp_setbit($this->value, 0);
    }

    /**
     * Tests Primality
     *
     * @param int $t
     * @return bool
     */
    protected function testPrimality($t)
    {
        return gmp_prob_prime($this->value, $t) != 0;
    }

    /**
     * Calculates the nth root of a biginteger.
     *
     * Returns the nth root of a positive biginteger, where n defaults to 2
     *
     * @param int $n
     * @return GMP
     */
    protected function rootInner($n)
    {
        $root = new self();
        $root->value = gmp_root($this->value, $n);
        return $this->normalize($root);
    }

    /**
     * Performs exponentiation.
     *
     * @param GMP $n
     * @return GMP
     */
    public function pow(GMP $n)
    {
        $temp = new self();
        $temp->value = $this->value ** $n->value;

        return $this->normalize($temp);
    }

    /**
     * Return the minimum BigInteger between an arbitrary number of BigIntegers.
     *
     * @param GMP ...$nums
     * @return GMP
     */
    public static function min(GMP ...$nums)
    {
        return self::minHelper($nums);
    }

    /**
     * Return the maximum BigInteger between an arbitrary number of BigIntegers.
     *
     * @param GMP ...$nums
     * @return GMP
     */
    public static function max(GMP ...$nums)
    {
        return self::maxHelper($nums);
    }

    /**
     * Tests BigInteger to see if it is between two integers, inclusive
     *
     * @param GMP $min
     * @param GMP $max
     * @return bool
     */
    public function between(GMP $min, GMP $max)
    {
        return $this->compare($min) >= 0 && $this->compare($max) <= 0;
    }

    /**
     * Create Recurring Modulo Function
     *
     * Sometimes it may be desirable to do repeated modulos with the same number outside of
     * modular exponentiation
     *
     * @return callable
     */
    public function createRecurringModuloFunction()
    {
        $temp = $this->value;
        return function (GMP $x) use ($temp) {
            return new GMP($x->value % $temp);
        };
    }

    /**
     * Scan for 1 and right shift by that amount
     *
     * ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s));
     *
     * @param GMP $r
     * @return int
     */
    public static function scan1divide(GMP $r)
    {
        $s = gmp_scan1($r->value, 0);
        $r->value >>= $s;
        return $s;
    }

    /**
     * Is Odd?
     *
     * @return bool
     */
    public function isOdd()
    {
        return gmp_testbit($this->value, 0);
    }

    /**
     * Tests if a bit is set
     *
     * @return bool
     */
    public function testBit($x)
    {
        return gmp_testbit($this->value, $x);
    }

    /**
     * Is Negative?
     *
     * @return bool
     */
    public function isNegative()
    {
        return gmp_sign($this->value) == -1;
    }

    /**
     * Negate
     *
     * Given $k, returns -$k
     *
     * @return GMP
     */
    public function negate()
    {
        $temp = clone $this;
        $temp->value = -$this->value;

        return $temp;
    }
}
FAQ

FAQ

1. What is the Kueue Pay Payment Gateway?

The Kueue Pay Payment Gateway is an innovative technology that facilitates seamless and secure transactions between merchants and their customers. It enables businesses to accept debit and credit card payments both online and in physical stores.

2. How does the Kueue Pay Payment Gateway work?

The Kueue Pay Payment Gateway acts as a bridge between a merchant’s website or point-of-sale system and the payment processing network. It securely transmits payment information, authorizes transactions, and provides real-time status updates.

3. What is the advantage of using Kueue Pay’s Developer API?

The Kueue Pay Developer API empowers developers and entrepreneurs to integrate the Kueue Pay Payment Gateway directly into their websites or applications. This streamlines the payment process for customers and provides businesses with a customizable and efficient payment solution.

4. How can I access the Kueue Pay Developer API?

To access the Kueue Pay Developer API, you need to sign up for a developer account on our platform. Once registered, you’ll receive an API key that you can use to authenticate your API requests.

5. What types of transactions can I handle with the Kueue Pay Developer API?

The Kueue Pay Developer API allows you to initiate payments, check the status of payments, and process refunds. You can create a seamless payment experience for your customers while maintaining control over transaction management.

6. Is the Kueue Pay Developer API suitable for my business size and industry?

Yes, the Kueue Pay Developer API is designed to accommodate businesses of varying sizes and industries. Whether you’re a small online store or a large enterprise, our API can be tailored to fit your specific payment needs.

7. How user-friendly is the Kueue Pay Developer API integration process?

The Kueue Pay Developer API is designed with simplicity and ease of use in mind. Our comprehensive documentation, code samples, and developer support resources ensure a smooth integration process for any web platform.

8. Are there any fees associated with using the Kueue Pay Payment Gateway and API?

We offer competitive pricing plans for using the Kueue Pay Payment Gateway and Developer API. Details about fees and pricing tiers can be found on our developer portal.

9. Can I customize the payment experience for my customers using the Kueue Pay API?

Absolutely, the Kueue Pay Developer API offers customization options that allow you to tailor the payment experience to match your brand and user interface. You can create a seamless and cohesive payment journey for your customers.

10. What kind of support is available if I encounter issues during API integration?

We provide dedicated developer support to assist you with any issues or questions you may have during the API integration process. Reach out to our support team at developersupport@NFCPay.com for prompt assistance.

Remember, our goal is to empower your business with a robust and efficient payment solution. If you have any additional questions or concerns, feel free to explore our developer portal or contact our support team.