<?php
/**
* Ed25519
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
*/
namespace phpseclib3\Crypt\EC\Curves;
use phpseclib3\Crypt\EC\BaseCurves\TwistedEdwards;
use phpseclib3\Crypt\Hash;
use phpseclib3\Crypt\Random;
use phpseclib3\Math\BigInteger;
class Ed25519 extends TwistedEdwards
{
const HASH = 'sha512';
/*
Per https://tools.ietf.org/html/rfc8032#page-6 EdDSA has several parameters, one of which is b:
2. An integer b with 2^(b-1) > p. EdDSA public keys have exactly b
bits, and EdDSA signatures have exactly 2*b bits. b is
recommended to be a multiple of 8, so public key and signature
lengths are an integral number of octets.
SIZE corresponds to b
*/
const SIZE = 32;
public function __construct()
{
// 2^255 - 19
$this->setModulo(new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED', 16));
$this->setCoefficients(
// -1
new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC', 16), // a
// -121665/121666
new BigInteger('52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3', 16) // d
);
$this->setBasePoint(
new BigInteger('216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A', 16),
new BigInteger('6666666666666666666666666666666666666666666666666666666666666658', 16)
);
$this->setOrder(new BigInteger('1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED', 16));
// algorithm 14.47 from http://cacr.uwaterloo.ca/hac/about/chap14.pdf#page=16
/*
$this->setReduction(function($x) {
$parts = $x->bitwise_split(255);
$className = $this->className;
if (count($parts) > 2) {
list(, $r) = $x->divide($className::$modulo);
return $r;
}
$zero = new BigInteger();
$c = new BigInteger(19);
switch (count($parts)) {
case 2:
list($qi, $ri) = $parts;
break;
case 1:
$qi = $zero;
list($ri) = $parts;
break;
case 0:
return $zero;
}
$r = $ri;
while ($qi->compare($zero) > 0) {
$temp = $qi->multiply($c)->bitwise_split(255);
if (count($temp) == 2) {
list($qi, $ri) = $temp;
} else {
$qi = $zero;
list($ri) = $temp;
}
$r = $r->add($ri);
}
while ($r->compare($className::$modulo) > 0) {
$r = $r->subtract($className::$modulo);
}
return $r;
});
*/
}
/**
* Recover X from Y
*
* Implements steps 2-4 at https://tools.ietf.org/html/rfc8032#section-5.1.3
*
* Used by EC\Keys\Common.php
*
* @param BigInteger $y
* @param boolean $sign
* @return object[]
*/
public function recoverX(BigInteger $y, $sign)
{
$y = $this->factory->newInteger($y);
$y2 = $y->multiply($y);
$u = $y2->subtract($this->one);
$v = $this->d->multiply($y2)->add($this->one);
$x2 = $u->divide($v);
if ($x2->equals($this->zero)) {
if ($sign) {
throw new \RuntimeException('Unable to recover X coordinate (x2 = 0)');
}
return clone $this->zero;
}
// find the square root
/* we don't do $x2->squareRoot() because, quoting from
https://tools.ietf.org/html/rfc8032#section-5.1.1:
"For point decoding or "decompression", square roots modulo p are
needed. They can be computed using the Tonelli-Shanks algorithm or
the special case for p = 5 (mod 8). To find a square root of a,
first compute the candidate root x = a^((p+3)/8) (mod p)."
*/
$exp = $this->getModulo()->add(new BigInteger(3));
$exp = $exp->bitwise_rightShift(3);
$x = $x2->pow($exp);
// If v x^2 = -u (mod p), set x <-- x * 2^((p-1)/4), which is a square root.
if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
$temp = $this->getModulo()->subtract(new BigInteger(1));
$temp = $temp->bitwise_rightShift(2);
$temp = $this->two->pow($temp);
$x = $x->multiply($temp);
if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
throw new \RuntimeException('Unable to recover X coordinate');
}
}
if ($x->isOdd() != $sign) {
$x = $x->negate();
}
return [$x, $y];
}
/**
* Extract Secret Scalar
*
* Implements steps 1-3 at https://tools.ietf.org/html/rfc8032#section-5.1.5
*
* Used by the various key handlers
*
* @param string $str
* @return array
*/
public function extractSecret($str)
{
if (strlen($str) != 32) {
throw new \LengthException('Private Key should be 32-bytes long');
}
// 1. Hash the 32-byte private key using SHA-512, storing the digest in
// a 64-octet large buffer, denoted h. Only the lower 32 bytes are
// used for generating the public key.
$hash = new Hash('sha512');
$h = $hash->hash($str);
$h = substr($h, 0, 32);
// 2. Prune the buffer: The lowest three bits of the first octet are
// cleared, the highest bit of the last octet is cleared, and the
// second highest bit of the last octet is set.
$h[0] = $h[0] & chr(0xF8);
$h = strrev($h);
$h[0] = ($h[0] & chr(0x3F)) | chr(0x40);
// 3. Interpret the buffer as the little-endian integer, forming a
// secret scalar s.
$dA = new BigInteger($h, 256);
return [
'dA' => $dA,
'secret' => $str
];
}
/**
* Encode a point as a string
*
* @param array $point
* @return string
*/
public function encodePoint($point)
{
list($x, $y) = $point;
$y = $y->toBytes();
$y[0] = $y[0] & chr(0x7F);
if ($x->isOdd()) {
$y[0] = $y[0] | chr(0x80);
}
$y = strrev($y);
return $y;
}
/**
* Creates a random scalar multiplier
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function createRandomMultiplier()
{
return $this->extractSecret(Random::string(32))['dA'];
}
/**
* Converts an affine point to an extended homogeneous coordinate
*
* From https://tools.ietf.org/html/rfc8032#section-5.1.4 :
*
* A point (x,y) is represented in extended homogeneous coordinates (X, Y, Z, T),
* with x = X/Z, y = Y/Z, x * y = T/Z.
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (empty($p)) {
return [clone $this->zero, clone $this->one, clone $this->one, clone $this->zero];
}
if (isset($p[2])) {
return $p;
}
$p[2] = clone $this->one;
$p[3] = $p[0]->multiply($p[1]);
return $p;
}
/**
* Doubles a point on a curve
*
* @return FiniteField[]
*/
public function doublePoint(array $p)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p)) {
return [];
}
if (!isset($p[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
// from https://tools.ietf.org/html/rfc8032#page-12
list($x1, $y1, $z1, $t1) = $p;
$a = $x1->multiply($x1);
$b = $y1->multiply($y1);
$c = $this->two->multiply($z1)->multiply($z1);
$h = $a->add($b);
$temp = $x1->add($y1);
$e = $h->subtract($temp->multiply($temp));
$g = $a->subtract($b);
$f = $c->add($g);
$x3 = $e->multiply($f);
$y3 = $g->multiply($h);
$t3 = $e->multiply($h);
$z3 = $f->multiply($g);
return [$x3, $y3, $z3, $t3];
}
/**
* Adds two points on the curve
*
* @return FiniteField[]
*/
public function addPoint(array $p, array $q)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
if (count($q)) {
return $q;
}
if (count($p)) {
return $p;
}
return [];
}
if (!isset($p[2]) || !isset($q[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
if ($p[0]->equals($q[0])) {
return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
}
// from https://tools.ietf.org/html/rfc8032#page-12
list($x1, $y1, $z1, $t1) = $p;
list($x2, $y2, $z2, $t2) = $q;
$a = $y1->subtract($x1)->multiply($y2->subtract($x2));
$b = $y1->add($x1)->multiply($y2->add($x2));
$c = $t1->multiply($this->two)->multiply($this->d)->multiply($t2);
$d = $z1->multiply($this->two)->multiply($z2);
$e = $b->subtract($a);
$f = $d->subtract($c);
$g = $d->add($c);
$h = $b->add($a);
$x3 = $e->multiply($f);
$y3 = $g->multiply($h);
$t3 = $e->multiply($h);
$z3 = $f->multiply($g);
return [$x3, $y3, $z3, $t3];
}
}
The Kueue Pay Payment Gateway is an innovative technology that facilitates seamless and secure transactions between merchants and their customers. It enables businesses to accept debit and credit card payments both online and in physical stores.
The Kueue Pay Payment Gateway acts as a bridge between a merchant’s website or point-of-sale system and the payment processing network. It securely transmits payment information, authorizes transactions, and provides real-time status updates.
The Kueue Pay Developer API empowers developers and entrepreneurs to integrate the Kueue Pay Payment Gateway directly into their websites or applications. This streamlines the payment process for customers and provides businesses with a customizable and efficient payment solution.
To access the Kueue Pay Developer API, you need to sign up for a developer account on our platform. Once registered, you’ll receive an API key that you can use to authenticate your API requests.
The Kueue Pay Developer API allows you to initiate payments, check the status of payments, and process refunds. You can create a seamless payment experience for your customers while maintaining control over transaction management.
Yes, the Kueue Pay Developer API is designed to accommodate businesses of varying sizes and industries. Whether you’re a small online store or a large enterprise, our API can be tailored to fit your specific payment needs.
The Kueue Pay Developer API is designed with simplicity and ease of use in mind. Our comprehensive documentation, code samples, and developer support resources ensure a smooth integration process for any web platform.
We offer competitive pricing plans for using the Kueue Pay Payment Gateway and Developer API. Details about fees and pricing tiers can be found on our developer portal.
Absolutely, the Kueue Pay Developer API offers customization options that allow you to tailor the payment experience to match your brand and user interface. You can create a seamless and cohesive payment journey for your customers.
We provide dedicated developer support to assist you with any issues or questions you may have during the API integration process. Reach out to our support team at developersupport@NFCPay.com for prompt assistance.
Remember, our goal is to empower your business with a robust and efficient payment solution. If you have any additional questions or concerns, feel free to explore our developer portal or contact our support team.