<?php
/**
* Curves over y^2 + x*y = x^3 + a*x^2 + b
*
* These are curves used in SEC 2 over prime fields: http://www.secg.org/SEC2-Ver-1.0.pdf
* The curve is a weierstrass curve with a[3] and a[2] set to 0.
*
* Uses Jacobian Coordinates for speed if able:
*
* https://en.wikipedia.org/wiki/Jacobian_curve
* https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Crypt\EC\BaseCurves;
use phpseclib3\Math\BigInteger;
use phpseclib3\Math\BinaryField;
use phpseclib3\Math\BinaryField\Integer as BinaryInteger;
/**
* Curves over y^2 + x*y = x^3 + a*x^2 + b
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class Binary extends Base
{
/**
* Binary Field Integer factory
*
* @var \phpseclib3\Math\BinaryField
*/
protected $factory;
/**
* Cofficient for x^1
*
* @var object
*/
protected $a;
/**
* Cofficient for x^0
*
* @var object
*/
protected $b;
/**
* Base Point
*
* @var object
*/
protected $p;
/**
* The number one over the specified finite field
*
* @var object
*/
protected $one;
/**
* The modulo
*
* @var BigInteger
*/
protected $modulo;
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Sets the modulo
*/
public function setModulo(...$modulo)
{
$this->modulo = $modulo;
$this->factory = new BinaryField(...$modulo);
$this->one = $this->factory->newInteger("\1");
}
/**
* Set coefficients a and b
*
* @param string $a
* @param string $b
*/
public function setCoefficients($a, $b)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->a = $this->factory->newInteger(pack('H*', $a));
$this->b = $this->factory->newInteger(pack('H*', $b));
}
/**
* Set x and y coordinates for the base point
*
* @param string|BinaryInteger $x
* @param string|BinaryInteger $y
*/
public function setBasePoint($x, $y)
{
switch (true) {
case !is_string($x) && !$x instanceof BinaryInteger:
throw new \UnexpectedValueException('Argument 1 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer');
case !is_string($y) && !$y instanceof BinaryInteger:
throw new \UnexpectedValueException('Argument 2 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer');
}
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->p = [
is_string($x) ? $this->factory->newInteger(pack('H*', $x)) : $x,
is_string($y) ? $this->factory->newInteger(pack('H*', $y)) : $y
];
}
/**
* Retrieve the base point as an array
*
* @return array
*/
public function getBasePoint()
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
/*
if (!isset($this->p)) {
throw new \RuntimeException('setBasePoint needs to be called before this method');
}
*/
return $this->p;
}
/**
* Adds two points on the curve
*
* @return FiniteField[]
*/
public function addPoint(array $p, array $q)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
if (count($q)) {
return $q;
}
if (count($p)) {
return $p;
}
return [];
}
if (!isset($p[2]) || !isset($q[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
if ($p[0]->equals($q[0])) {
return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
}
// formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html
list($x1, $y1, $z1) = $p;
list($x2, $y2, $z2) = $q;
$o1 = $z1->multiply($z1);
$b = $x2->multiply($o1);
if ($z2->equals($this->one)) {
$d = $y2->multiply($o1)->multiply($z1);
$e = $x1->add($b);
$f = $y1->add($d);
$z3 = $e->multiply($z1);
$h = $f->multiply($x2)->add($z3->multiply($y2));
$i = $f->add($z3);
$g = $z3->multiply($z3);
$p1 = $this->a->multiply($g);
$p2 = $f->multiply($i);
$p3 = $e->multiply($e)->multiply($e);
$x3 = $p1->add($p2)->add($p3);
$y3 = $i->multiply($x3)->add($g->multiply($h));
return [$x3, $y3, $z3];
}
$o2 = $z2->multiply($z2);
$a = $x1->multiply($o2);
$c = $y1->multiply($o2)->multiply($z2);
$d = $y2->multiply($o1)->multiply($z1);
$e = $a->add($b);
$f = $c->add($d);
$g = $e->multiply($z1);
$h = $f->multiply($x2)->add($g->multiply($y2));
$z3 = $g->multiply($z2);
$i = $f->add($z3);
$p1 = $this->a->multiply($z3->multiply($z3));
$p2 = $f->multiply($i);
$p3 = $e->multiply($e)->multiply($e);
$x3 = $p1->add($p2)->add($p3);
$y3 = $i->multiply($x3)->add($g->multiply($g)->multiply($h));
return [$x3, $y3, $z3];
}
/**
* Doubles a point on a curve
*
* @return FiniteField[]
*/
public function doublePoint(array $p)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p)) {
return [];
}
if (!isset($p[2])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
}
// formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html
list($x1, $y1, $z1) = $p;
$a = $x1->multiply($x1);
$b = $a->multiply($a);
if ($z1->equals($this->one)) {
$x3 = $b->add($this->b);
$z3 = clone $x1;
$p1 = $a->add($y1)->add($z3)->multiply($this->b);
$p2 = $a->add($y1)->multiply($b);
$y3 = $p1->add($p2);
return [$x3, $y3, $z3];
}
$c = $z1->multiply($z1);
$d = $c->multiply($c);
$x3 = $b->add($this->b->multiply($d->multiply($d)));
$z3 = $x1->multiply($c);
$p1 = $b->multiply($z3);
$p2 = $a->add($y1->multiply($z1))->add($z3)->multiply($x3);
$y3 = $p1->add($p2);
return [$x3, $y3, $z3];
}
/**
* Returns the X coordinate and the derived Y coordinate
*
* Not supported because it is covered by patents.
* Quoting https://www.openssl.org/docs/man1.1.0/apps/ecparam.html ,
*
* "Due to patent issues the compressed option is disabled by default for binary curves
* and can be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at
* compile time."
*
* @return array
*/
public function derivePoint($m)
{
throw new \RuntimeException('Point compression on binary finite field elliptic curves is not supported');
}
/**
* Tests whether or not the x / y values satisfy the equation
*
* @return boolean
*/
public function verifyPoint(array $p)
{
list($x, $y) = $p;
$lhs = $y->multiply($y);
$lhs = $lhs->add($x->multiply($y));
$x2 = $x->multiply($x);
$x3 = $x2->multiply($x);
$rhs = $x3->add($this->a->multiply($x2))->add($this->b);
return $lhs->equals($rhs);
}
/**
* Returns the modulo
*
* @return \phpseclib3\Math\BigInteger
*/
public function getModulo()
{
return $this->modulo;
}
/**
* Returns the a coefficient
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function getA()
{
return $this->a;
}
/**
* Returns the a coefficient
*
* @return \phpseclib3\Math\PrimeField\Integer
*/
public function getB()
{
return $this->b;
}
/**
* Returns the affine point
*
* A Jacobian Coordinate is of the form (x, y, z).
* To convert a Jacobian Coordinate to an Affine Point
* you do (x / z^2, y / z^3)
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToAffine(array $p)
{
if (!isset($p[2])) {
return $p;
}
list($x, $y, $z) = $p;
$z = $this->one->divide($z);
$z2 = $z->multiply($z);
return [
$x->multiply($z2),
$y->multiply($z2)->multiply($z)
];
}
/**
* Converts an affine point to a jacobian coordinate
*
* @return \phpseclib3\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (isset($p[2])) {
return $p;
}
$p[2] = clone $this->one;
$p['fresh'] = true;
return $p;
}
}
The Kueue Pay Payment Gateway is an innovative technology that facilitates seamless and secure transactions between merchants and their customers. It enables businesses to accept debit and credit card payments both online and in physical stores.
The Kueue Pay Payment Gateway acts as a bridge between a merchant’s website or point-of-sale system and the payment processing network. It securely transmits payment information, authorizes transactions, and provides real-time status updates.
The Kueue Pay Developer API empowers developers and entrepreneurs to integrate the Kueue Pay Payment Gateway directly into their websites or applications. This streamlines the payment process for customers and provides businesses with a customizable and efficient payment solution.
To access the Kueue Pay Developer API, you need to sign up for a developer account on our platform. Once registered, you’ll receive an API key that you can use to authenticate your API requests.
The Kueue Pay Developer API allows you to initiate payments, check the status of payments, and process refunds. You can create a seamless payment experience for your customers while maintaining control over transaction management.
Yes, the Kueue Pay Developer API is designed to accommodate businesses of varying sizes and industries. Whether you’re a small online store or a large enterprise, our API can be tailored to fit your specific payment needs.
The Kueue Pay Developer API is designed with simplicity and ease of use in mind. Our comprehensive documentation, code samples, and developer support resources ensure a smooth integration process for any web platform.
We offer competitive pricing plans for using the Kueue Pay Payment Gateway and Developer API. Details about fees and pricing tiers can be found on our developer portal.
Absolutely, the Kueue Pay Developer API offers customization options that allow you to tailor the payment experience to match your brand and user interface. You can create a seamless and cohesive payment journey for your customers.
We provide dedicated developer support to assist you with any issues or questions you may have during the API integration process. Reach out to our support team at developersupport@NFCPay.com for prompt assistance.
Remember, our goal is to empower your business with a robust and efficient payment solution. If you have any additional questions or concerns, feel free to explore our developer portal or contact our support team.