/home/kueuepay/public_html/vendor/brick/math/src/Internal/Calculator/NativeCalculator.php
<?php

declare(strict_types=1);

namespace Brick\Math\Internal\Calculator;

use Brick\Math\Internal\Calculator;

/**
 * Calculator implementation using only native PHP code.
 *
 * @internal
 *
 * @psalm-immutable
 */
class NativeCalculator extends Calculator
{
    /**
     * The max number of digits the platform can natively add, subtract, multiply or divide without overflow.
     * For multiplication, this represents the max sum of the lengths of both operands.
     *
     * In addition, it is assumed that an extra digit can hold a carry (1) without overflowing.
     * Example: 32-bit: max number 1,999,999,999 (9 digits + carry)
     *          64-bit: max number 1,999,999,999,999,999,999 (18 digits + carry)
     */
    private int $maxDigits;

    /**
     * @codeCoverageIgnore
     */
    public function __construct()
    {
        switch (PHP_INT_SIZE) {
            case 4:
                $this->maxDigits = 9;
                break;

            case 8:
                $this->maxDigits = 18;
                break;

            default:
                throw new \RuntimeException('The platform is not 32-bit or 64-bit as expected.');
        }
    }

    public function add(string $a, string $b) : string
    {
        /**
         * @psalm-var numeric-string $a
         * @psalm-var numeric-string $b
         */
        $result = $a + $b;

        if (is_int($result)) {
            return (string) $result;
        }

        if ($a === '0') {
            return $b;
        }

        if ($b === '0') {
            return $a;
        }

        [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);

        $result = $aNeg === $bNeg ? $this->doAdd($aDig, $bDig) : $this->doSub($aDig, $bDig);

        if ($aNeg) {
            $result = $this->neg($result);
        }

        return $result;
    }

    public function sub(string $a, string $b) : string
    {
        return $this->add($a, $this->neg($b));
    }

    public function mul(string $a, string $b) : string
    {
        /**
         * @psalm-var numeric-string $a
         * @psalm-var numeric-string $b
         */
        $result = $a * $b;

        if (is_int($result)) {
            return (string) $result;
        }

        if ($a === '0' || $b === '0') {
            return '0';
        }

        if ($a === '1') {
            return $b;
        }

        if ($b === '1') {
            return $a;
        }

        if ($a === '-1') {
            return $this->neg($b);
        }

        if ($b === '-1') {
            return $this->neg($a);
        }

        [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);

        $result = $this->doMul($aDig, $bDig);

        if ($aNeg !== $bNeg) {
            $result = $this->neg($result);
        }

        return $result;
    }

    public function divQ(string $a, string $b) : string
    {
        return $this->divQR($a, $b)[0];
    }

    public function divR(string $a, string $b): string
    {
        return $this->divQR($a, $b)[1];
    }

    public function divQR(string $a, string $b) : array
    {
        if ($a === '0') {
            return ['0', '0'];
        }

        if ($a === $b) {
            return ['1', '0'];
        }

        if ($b === '1') {
            return [$a, '0'];
        }

        if ($b === '-1') {
            return [$this->neg($a), '0'];
        }

        /** @psalm-var numeric-string $a */
        $na = $a * 1; // cast to number

        if (is_int($na)) {
            /** @psalm-var numeric-string $b */
            $nb = $b * 1;

            if (is_int($nb)) {
                // the only division that may overflow is PHP_INT_MIN / -1,
                // which cannot happen here as we've already handled a divisor of -1 above.
                $r = $na % $nb;
                $q = ($na - $r) / $nb;

                assert(is_int($q));

                return [
                    (string) $q,
                    (string) $r
                ];
            }
        }

        [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);

        [$q, $r] = $this->doDiv($aDig, $bDig);

        if ($aNeg !== $bNeg) {
            $q = $this->neg($q);
        }

        if ($aNeg) {
            $r = $this->neg($r);
        }

        return [$q, $r];
    }

    public function pow(string $a, int $e) : string
    {
        if ($e === 0) {
            return '1';
        }

        if ($e === 1) {
            return $a;
        }

        $odd = $e % 2;
        $e -= $odd;

        $aa = $this->mul($a, $a);

        /** @psalm-suppress PossiblyInvalidArgument We're sure that $e / 2 is an int now */
        $result = $this->pow($aa, $e / 2);

        if ($odd === 1) {
            $result = $this->mul($result, $a);
        }

        return $result;
    }

    /**
     * Algorithm from: https://www.geeksforgeeks.org/modular-exponentiation-power-in-modular-arithmetic/
     */
    public function modPow(string $base, string $exp, string $mod) : string
    {
        // special case: the algorithm below fails with 0 power 0 mod 1 (returns 1 instead of 0)
        if ($base === '0' && $exp === '0' && $mod === '1') {
            return '0';
        }

        // special case: the algorithm below fails with power 0 mod 1 (returns 1 instead of 0)
        if ($exp === '0' && $mod === '1') {
            return '0';
        }

        $x = $base;

        $res = '1';

        // numbers are positive, so we can use remainder instead of modulo
        $x = $this->divR($x, $mod);

        while ($exp !== '0') {
            if (in_array($exp[-1], ['1', '3', '5', '7', '9'])) { // odd
                $res = $this->divR($this->mul($res, $x), $mod);
            }

            $exp = $this->divQ($exp, '2');
            $x = $this->divR($this->mul($x, $x), $mod);
        }

        return $res;
    }

    /**
     * Adapted from https://cp-algorithms.com/num_methods/roots_newton.html
     */
    public function sqrt(string $n) : string
    {
        if ($n === '0') {
            return '0';
        }

        // initial approximation
        $x = \str_repeat('9', \intdiv(\strlen($n), 2) ?: 1);

        $decreased = false;

        for (;;) {
            $nx = $this->divQ($this->add($x, $this->divQ($n, $x)), '2');

            if ($x === $nx || $this->cmp($nx, $x) > 0 && $decreased) {
                break;
            }

            $decreased = $this->cmp($nx, $x) < 0;
            $x = $nx;
        }

        return $x;
    }

    /**
     * Performs the addition of two non-signed large integers.
     */
    private function doAdd(string $a, string $b) : string
    {
        [$a, $b, $length] = $this->pad($a, $b);

        $carry = 0;
        $result = '';

        for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
            $blockLength = $this->maxDigits;

            if ($i < 0) {
                $blockLength += $i;
                /** @psalm-suppress LoopInvalidation */
                $i = 0;
            }

            /** @psalm-var numeric-string $blockA */
            $blockA = \substr($a, $i, $blockLength);

            /** @psalm-var numeric-string $blockB */
            $blockB = \substr($b, $i, $blockLength);

            $sum = (string) ($blockA + $blockB + $carry);
            $sumLength = \strlen($sum);

            if ($sumLength > $blockLength) {
                $sum = \substr($sum, 1);
                $carry = 1;
            } else {
                if ($sumLength < $blockLength) {
                    $sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
                }
                $carry = 0;
            }

            $result = $sum . $result;

            if ($i === 0) {
                break;
            }
        }

        if ($carry === 1) {
            $result = '1' . $result;
        }

        return $result;
    }

    /**
     * Performs the subtraction of two non-signed large integers.
     */
    private function doSub(string $a, string $b) : string
    {
        if ($a === $b) {
            return '0';
        }

        // Ensure that we always subtract to a positive result: biggest minus smallest.
        $cmp = $this->doCmp($a, $b);

        $invert = ($cmp === -1);

        if ($invert) {
            $c = $a;
            $a = $b;
            $b = $c;
        }

        [$a, $b, $length] = $this->pad($a, $b);

        $carry = 0;
        $result = '';

        $complement = 10 ** $this->maxDigits;

        for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
            $blockLength = $this->maxDigits;

            if ($i < 0) {
                $blockLength += $i;
                /** @psalm-suppress LoopInvalidation */
                $i = 0;
            }

            /** @psalm-var numeric-string $blockA */
            $blockA = \substr($a, $i, $blockLength);

            /** @psalm-var numeric-string $blockB */
            $blockB = \substr($b, $i, $blockLength);

            $sum = $blockA - $blockB - $carry;

            if ($sum < 0) {
                $sum += $complement;
                $carry = 1;
            } else {
                $carry = 0;
            }

            $sum = (string) $sum;
            $sumLength = \strlen($sum);

            if ($sumLength < $blockLength) {
                $sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
            }

            $result = $sum . $result;

            if ($i === 0) {
                break;
            }
        }

        // Carry cannot be 1 when the loop ends, as a > b
        assert($carry === 0);

        $result = \ltrim($result, '0');

        if ($invert) {
            $result = $this->neg($result);
        }

        return $result;
    }

    /**
     * Performs the multiplication of two non-signed large integers.
     */
    private function doMul(string $a, string $b) : string
    {
        $x = \strlen($a);
        $y = \strlen($b);

        $maxDigits = \intdiv($this->maxDigits, 2);
        $complement = 10 ** $maxDigits;

        $result = '0';

        for ($i = $x - $maxDigits;; $i -= $maxDigits) {
            $blockALength = $maxDigits;

            if ($i < 0) {
                $blockALength += $i;
                /** @psalm-suppress LoopInvalidation */
                $i = 0;
            }

            $blockA = (int) \substr($a, $i, $blockALength);

            $line = '';
            $carry = 0;

            for ($j = $y - $maxDigits;; $j -= $maxDigits) {
                $blockBLength = $maxDigits;

                if ($j < 0) {
                    $blockBLength += $j;
                    /** @psalm-suppress LoopInvalidation */
                    $j = 0;
                }

                $blockB = (int) \substr($b, $j, $blockBLength);

                $mul = $blockA * $blockB + $carry;
                $value = $mul % $complement;
                $carry = ($mul - $value) / $complement;

                $value = (string) $value;
                $value = \str_pad($value, $maxDigits, '0', STR_PAD_LEFT);

                $line = $value . $line;

                if ($j === 0) {
                    break;
                }
            }

            if ($carry !== 0) {
                $line = $carry . $line;
            }

            $line = \ltrim($line, '0');

            if ($line !== '') {
                $line .= \str_repeat('0', $x - $blockALength - $i);
                $result = $this->add($result, $line);
            }

            if ($i === 0) {
                break;
            }
        }

        return $result;
    }

    /**
     * Performs the division of two non-signed large integers.
     *
     * @return string[] The quotient and remainder.
     */
    private function doDiv(string $a, string $b) : array
    {
        $cmp = $this->doCmp($a, $b);

        if ($cmp === -1) {
            return ['0', $a];
        }

        $x = \strlen($a);
        $y = \strlen($b);

        // we now know that a >= b && x >= y

        $q = '0'; // quotient
        $r = $a; // remainder
        $z = $y; // focus length, always $y or $y+1

        for (;;) {
            $focus = \substr($a, 0, $z);

            $cmp = $this->doCmp($focus, $b);

            if ($cmp === -1) {
                if ($z === $x) { // remainder < dividend
                    break;
                }

                $z++;
            }

            $zeros = \str_repeat('0', $x - $z);

            $q = $this->add($q, '1' . $zeros);
            $a = $this->sub($a, $b . $zeros);

            $r = $a;

            if ($r === '0') { // remainder == 0
                break;
            }

            $x = \strlen($a);

            if ($x < $y) { // remainder < dividend
                break;
            }

            $z = $y;
        }

        return [$q, $r];
    }

    /**
     * Compares two non-signed large numbers.
     *
     * @return int [-1, 0, 1]
     */
    private function doCmp(string $a, string $b) : int
    {
        $x = \strlen($a);
        $y = \strlen($b);

        $cmp = $x <=> $y;

        if ($cmp !== 0) {
            return $cmp;
        }

        return \strcmp($a, $b) <=> 0; // enforce [-1, 0, 1]
    }

    /**
     * Pads the left of one of the given numbers with zeros if necessary to make both numbers the same length.
     *
     * The numbers must only consist of digits, without leading minus sign.
     *
     * @return array{string, string, int}
     */
    private function pad(string $a, string $b) : array
    {
        $x = \strlen($a);
        $y = \strlen($b);

        if ($x > $y) {
            $b = \str_repeat('0', $x - $y) . $b;

            return [$a, $b, $x];
        }

        if ($x < $y) {
            $a = \str_repeat('0', $y - $x) . $a;

            return [$a, $b, $y];
        }

        return [$a, $b, $x];
    }
}
FAQ

FAQ

1. What is the Kueue Pay Payment Gateway?

The Kueue Pay Payment Gateway is an innovative technology that facilitates seamless and secure transactions between merchants and their customers. It enables businesses to accept debit and credit card payments both online and in physical stores.

2. How does the Kueue Pay Payment Gateway work?

The Kueue Pay Payment Gateway acts as a bridge between a merchant’s website or point-of-sale system and the payment processing network. It securely transmits payment information, authorizes transactions, and provides real-time status updates.

3. What is the advantage of using Kueue Pay’s Developer API?

The Kueue Pay Developer API empowers developers and entrepreneurs to integrate the Kueue Pay Payment Gateway directly into their websites or applications. This streamlines the payment process for customers and provides businesses with a customizable and efficient payment solution.

4. How can I access the Kueue Pay Developer API?

To access the Kueue Pay Developer API, you need to sign up for a developer account on our platform. Once registered, you’ll receive an API key that you can use to authenticate your API requests.

5. What types of transactions can I handle with the Kueue Pay Developer API?

The Kueue Pay Developer API allows you to initiate payments, check the status of payments, and process refunds. You can create a seamless payment experience for your customers while maintaining control over transaction management.

6. Is the Kueue Pay Developer API suitable for my business size and industry?

Yes, the Kueue Pay Developer API is designed to accommodate businesses of varying sizes and industries. Whether you’re a small online store or a large enterprise, our API can be tailored to fit your specific payment needs.

7. How user-friendly is the Kueue Pay Developer API integration process?

The Kueue Pay Developer API is designed with simplicity and ease of use in mind. Our comprehensive documentation, code samples, and developer support resources ensure a smooth integration process for any web platform.

8. Are there any fees associated with using the Kueue Pay Payment Gateway and API?

We offer competitive pricing plans for using the Kueue Pay Payment Gateway and Developer API. Details about fees and pricing tiers can be found on our developer portal.

9. Can I customize the payment experience for my customers using the Kueue Pay API?

Absolutely, the Kueue Pay Developer API offers customization options that allow you to tailor the payment experience to match your brand and user interface. You can create a seamless and cohesive payment journey for your customers.

10. What kind of support is available if I encounter issues during API integration?

We provide dedicated developer support to assist you with any issues or questions you may have during the API integration process. Reach out to our support team at developersupport@NFCPay.com for prompt assistance.

Remember, our goal is to empower your business with a robust and efficient payment solution. If you have any additional questions or concerns, feel free to explore our developer portal or contact our support team.