/home/kueuepay/public_html/vendor/markbaker/matrix/classes/src/Decomposition/QR.php
<?php

namespace Matrix\Decomposition;

use Matrix\Exception;
use Matrix\Matrix;

class QR
{
    private $qrMatrix;
    private $rows;
    private $columns;

    private $rDiagonal = [];

    public function __construct(Matrix $matrix)
    {
        $this->qrMatrix = $matrix->toArray();
        $this->rows = $matrix->rows;
        $this->columns = $matrix->columns;

        $this->decompose();
    }

    public function getHouseholdVectors(): Matrix
    {
        $householdVectors = [];
        for ($row = 0; $row < $this->rows; ++$row) {
            for ($column = 0; $column < $this->columns; ++$column) {
                if ($row >= $column) {
                    $householdVectors[$row][$column] = $this->qrMatrix[$row][$column];
                } else {
                    $householdVectors[$row][$column] = 0.0;
                }
            }
        }

        return new Matrix($householdVectors);
    }

    public function getQ(): Matrix
    {
        $qGrid = [];

        $rowCount = $this->rows;
        for ($k = $this->columns - 1; $k >= 0; --$k) {
            for ($i = 0; $i < $this->rows; ++$i) {
                $qGrid[$i][$k] = 0.0;
            }
            $qGrid[$k][$k] = 1.0;
            if ($this->columns > $this->rows) {
                $qGrid = array_slice($qGrid, 0, $this->rows);
            }

            for ($j = $k; $j < $this->columns; ++$j) {
                if (isset($this->qrMatrix[$k], $this->qrMatrix[$k][$k]) && $this->qrMatrix[$k][$k] != 0.0) {
                    $s = 0.0;
                    for ($i = $k; $i < $this->rows; ++$i) {
                        $s += $this->qrMatrix[$i][$k] * $qGrid[$i][$j];
                    }
                    $s = -$s / $this->qrMatrix[$k][$k];
                    for ($i = $k; $i < $this->rows; ++$i) {
                        $qGrid[$i][$j] += $s * $this->qrMatrix[$i][$k];
                    }
                }
            }
        }

        array_walk(
            $qGrid,
            function (&$row) use ($rowCount) {
                $row = array_reverse($row);
                $row = array_slice($row, 0, $rowCount);
            }
        );

        return new Matrix($qGrid);
    }

    public function getR(): Matrix
    {
        $rGrid = [];

        for ($row = 0; $row < $this->columns; ++$row) {
            for ($column = 0; $column < $this->columns; ++$column) {
                if ($row < $column) {
                    $rGrid[$row][$column] = $this->qrMatrix[$row][$column] ?? 0.0;
                } elseif ($row === $column) {
                    $rGrid[$row][$column] = $this->rDiagonal[$row] ?? 0.0;
                } else {
                    $rGrid[$row][$column] = 0.0;
                }
            }
        }

        if ($this->columns > $this->rows) {
            $rGrid = array_slice($rGrid, 0, $this->rows);
        }

        return new Matrix($rGrid);
    }

    private function hypo($a, $b): float
    {
        if (abs($a) > abs($b)) {
            $r = $b / $a;
            $r = abs($a) * sqrt(1 + $r * $r);
        } elseif ($b != 0.0) {
            $r = $a / $b;
            $r = abs($b) * sqrt(1 + $r * $r);
        } else {
            $r = 0.0;
        }

        return $r;
    }

    /**
     * QR Decomposition computed by Householder reflections.
     */
    private function decompose(): void
    {
        for ($k = 0; $k < $this->columns; ++$k) {
            // Compute 2-norm of k-th column without under/overflow.
            $norm = 0.0;
            for ($i = $k; $i < $this->rows; ++$i) {
                $norm = $this->hypo($norm, $this->qrMatrix[$i][$k]);
            }
            if ($norm != 0.0) {
                // Form k-th Householder vector.
                if ($this->qrMatrix[$k][$k] < 0.0) {
                    $norm = -$norm;
                }
                for ($i = $k; $i < $this->rows; ++$i) {
                    $this->qrMatrix[$i][$k] /= $norm;
                }
                $this->qrMatrix[$k][$k] += 1.0;
                // Apply transformation to remaining columns.
                for ($j = $k + 1; $j < $this->columns; ++$j) {
                    $s = 0.0;
                    for ($i = $k; $i < $this->rows; ++$i) {
                        $s += $this->qrMatrix[$i][$k] * $this->qrMatrix[$i][$j];
                    }
                    $s = -$s / $this->qrMatrix[$k][$k];
                    for ($i = $k; $i < $this->rows; ++$i) {
                        $this->qrMatrix[$i][$j] += $s * $this->qrMatrix[$i][$k];
                    }
                }
            }
            $this->rDiagonal[$k] = -$norm;
        }
    }

    public function isFullRank(): bool
    {
        for ($j = 0; $j < $this->columns; ++$j) {
            if ($this->rDiagonal[$j] == 0.0) {
                return false;
            }
        }

        return true;
    }

    /**
     * Least squares solution of A*X = B.
     *
     * @param Matrix $B a Matrix with as many rows as A and any number of columns
     *
     * @throws Exception
     *
     * @return Matrix matrix that minimizes the two norm of Q*R*X-B
     */
    public function solve(Matrix $B): Matrix
    {
        if ($B->rows !== $this->rows) {
            throw new Exception('Matrix row dimensions are not equal');
        }

        if (!$this->isFullRank()) {
            throw new Exception('Can only perform this operation on a full-rank matrix');
        }

        // Compute Y = transpose(Q)*B
        $Y = $this->getQ()->transpose()
            ->multiply($B);
        // Solve R*X = Y;
        return $this->getR()->inverse()
            ->multiply($Y);
    }
}
Best Practice

Best Practices

To ensure a smooth integration process and optimal performance, follow these best practices:

  1. Use secure HTTPS connections for all API requests.
  2. Implement robust error handling to handle potential issues gracefully.
  3. Regularly update your integration to stay current with any API changes or enhancements.