/home/kueuepay/www/vendor/phpseclib/phpseclib/phpseclib/Crypt/EC/Curves/Ed25519.php
<?php

/**
 * Ed25519
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <terrafrost@php.net>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 */

namespace phpseclib3\Crypt\EC\Curves;

use phpseclib3\Crypt\EC\BaseCurves\TwistedEdwards;
use phpseclib3\Crypt\Hash;
use phpseclib3\Crypt\Random;
use phpseclib3\Math\BigInteger;

class Ed25519 extends TwistedEdwards
{
    const HASH = 'sha512';
    /*
      Per https://tools.ietf.org/html/rfc8032#page-6 EdDSA has several parameters, one of which is b:

      2.   An integer b with 2^(b-1) > p.  EdDSA public keys have exactly b
           bits, and EdDSA signatures have exactly 2*b bits.  b is
           recommended to be a multiple of 8, so public key and signature
           lengths are an integral number of octets.

      SIZE corresponds to b
    */
    const SIZE = 32;

    public function __construct()
    {
        // 2^255 - 19
        $this->setModulo(new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED', 16));
        $this->setCoefficients(
            // -1
            new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC', 16), // a
            // -121665/121666
            new BigInteger('52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3', 16)  // d
        );
        $this->setBasePoint(
            new BigInteger('216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A', 16),
            new BigInteger('6666666666666666666666666666666666666666666666666666666666666658', 16)
        );
        $this->setOrder(new BigInteger('1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED', 16));
        // algorithm 14.47 from http://cacr.uwaterloo.ca/hac/about/chap14.pdf#page=16
        /*
        $this->setReduction(function($x) {
            $parts = $x->bitwise_split(255);
            $className = $this->className;

            if (count($parts) > 2) {
                list(, $r) = $x->divide($className::$modulo);
                return $r;
            }

            $zero = new BigInteger();
            $c = new BigInteger(19);

            switch (count($parts)) {
                case 2:
                    list($qi, $ri) = $parts;
                    break;
                case 1:
                    $qi = $zero;
                    list($ri) = $parts;
                    break;
                case 0:
                    return $zero;
            }
            $r = $ri;

            while ($qi->compare($zero) > 0) {
                $temp = $qi->multiply($c)->bitwise_split(255);
                if (count($temp) == 2) {
                    list($qi, $ri) = $temp;
                } else {
                    $qi = $zero;
                    list($ri) = $temp;
                }
                $r = $r->add($ri);
            }

            while ($r->compare($className::$modulo) > 0) {
                $r = $r->subtract($className::$modulo);
            }
            return $r;
        });
        */
    }

    /**
     * Recover X from Y
     *
     * Implements steps 2-4 at https://tools.ietf.org/html/rfc8032#section-5.1.3
     *
     * Used by EC\Keys\Common.php
     *
     * @param BigInteger $y
     * @param boolean $sign
     * @return object[]
     */
    public function recoverX(BigInteger $y, $sign)
    {
        $y = $this->factory->newInteger($y);

        $y2 = $y->multiply($y);
        $u = $y2->subtract($this->one);
        $v = $this->d->multiply($y2)->add($this->one);
        $x2 = $u->divide($v);
        if ($x2->equals($this->zero)) {
            if ($sign) {
                throw new \RuntimeException('Unable to recover X coordinate (x2 = 0)');
            }
            return clone $this->zero;
        }
        // find the square root
        /* we don't do $x2->squareRoot() because, quoting from
           https://tools.ietf.org/html/rfc8032#section-5.1.1:

           "For point decoding or "decompression", square roots modulo p are
            needed.  They can be computed using the Tonelli-Shanks algorithm or
            the special case for p = 5 (mod 8).  To find a square root of a,
            first compute the candidate root x = a^((p+3)/8) (mod p)."
         */
        $exp = $this->getModulo()->add(new BigInteger(3));
        $exp = $exp->bitwise_rightShift(3);
        $x = $x2->pow($exp);

        // If v x^2 = -u (mod p), set x <-- x * 2^((p-1)/4), which is a square root.
        if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
            $temp = $this->getModulo()->subtract(new BigInteger(1));
            $temp = $temp->bitwise_rightShift(2);
            $temp = $this->two->pow($temp);
            $x = $x->multiply($temp);
            if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
                throw new \RuntimeException('Unable to recover X coordinate');
            }
        }
        if ($x->isOdd() != $sign) {
            $x = $x->negate();
        }

        return [$x, $y];
    }

    /**
     * Extract Secret Scalar
     *
     * Implements steps 1-3 at https://tools.ietf.org/html/rfc8032#section-5.1.5
     *
     * Used by the various key handlers
     *
     * @param string $str
     * @return array
     */
    public function extractSecret($str)
    {
        if (strlen($str) != 32) {
            throw new \LengthException('Private Key should be 32-bytes long');
        }
        // 1.  Hash the 32-byte private key using SHA-512, storing the digest in
        //     a 64-octet large buffer, denoted h.  Only the lower 32 bytes are
        //     used for generating the public key.
        $hash = new Hash('sha512');
        $h = $hash->hash($str);
        $h = substr($h, 0, 32);
        // 2.  Prune the buffer: The lowest three bits of the first octet are
        //     cleared, the highest bit of the last octet is cleared, and the
        //     second highest bit of the last octet is set.
        $h[0] = $h[0] & chr(0xF8);
        $h = strrev($h);
        $h[0] = ($h[0] & chr(0x3F)) | chr(0x40);
        // 3.  Interpret the buffer as the little-endian integer, forming a
        //     secret scalar s.
        $dA = new BigInteger($h, 256);

        return [
            'dA' => $dA,
            'secret' => $str
        ];
    }

    /**
     * Encode a point as a string
     *
     * @param array $point
     * @return string
     */
    public function encodePoint($point)
    {
        list($x, $y) = $point;
        $y = $y->toBytes();
        $y[0] = $y[0] & chr(0x7F);
        if ($x->isOdd()) {
            $y[0] = $y[0] | chr(0x80);
        }
        $y = strrev($y);

        return $y;
    }

    /**
     * Creates a random scalar multiplier
     *
     * @return \phpseclib3\Math\PrimeField\Integer
     */
    public function createRandomMultiplier()
    {
        return $this->extractSecret(Random::string(32))['dA'];
    }

    /**
     * Converts an affine point to an extended homogeneous coordinate
     *
     * From https://tools.ietf.org/html/rfc8032#section-5.1.4 :
     *
     * A point (x,y) is represented in extended homogeneous coordinates (X, Y, Z, T),
     * with x = X/Z, y = Y/Z, x * y = T/Z.
     *
     * @return \phpseclib3\Math\PrimeField\Integer[]
     */
    public function convertToInternal(array $p)
    {
        if (empty($p)) {
            return [clone $this->zero, clone $this->one, clone $this->one, clone $this->zero];
        }

        if (isset($p[2])) {
            return $p;
        }

        $p[2] = clone $this->one;
        $p[3] = $p[0]->multiply($p[1]);

        return $p;
    }

    /**
     * Doubles a point on a curve
     *
     * @return FiniteField[]
     */
    public function doublePoint(array $p)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p)) {
            return [];
        }

        if (!isset($p[2])) {
            throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
        }

        // from https://tools.ietf.org/html/rfc8032#page-12

        list($x1, $y1, $z1, $t1) = $p;

        $a = $x1->multiply($x1);
        $b = $y1->multiply($y1);
        $c = $this->two->multiply($z1)->multiply($z1);
        $h = $a->add($b);
        $temp = $x1->add($y1);
        $e = $h->subtract($temp->multiply($temp));
        $g = $a->subtract($b);
        $f = $c->add($g);

        $x3 = $e->multiply($f);
        $y3 = $g->multiply($h);
        $t3 = $e->multiply($h);
        $z3 = $f->multiply($g);

        return [$x3, $y3, $z3, $t3];
    }

    /**
     * Adds two points on the curve
     *
     * @return FiniteField[]
     */
    public function addPoint(array $p, array $q)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p) || !count($q)) {
            if (count($q)) {
                return $q;
            }
            if (count($p)) {
                return $p;
            }
            return [];
        }

        if (!isset($p[2]) || !isset($q[2])) {
            throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
        }

        if ($p[0]->equals($q[0])) {
            return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
        }

        // from https://tools.ietf.org/html/rfc8032#page-12

        list($x1, $y1, $z1, $t1) = $p;
        list($x2, $y2, $z2, $t2) = $q;

        $a = $y1->subtract($x1)->multiply($y2->subtract($x2));
        $b = $y1->add($x1)->multiply($y2->add($x2));
        $c = $t1->multiply($this->two)->multiply($this->d)->multiply($t2);
        $d = $z1->multiply($this->two)->multiply($z2);
        $e = $b->subtract($a);
        $f = $d->subtract($c);
        $g = $d->add($c);
        $h = $b->add($a);

        $x3 = $e->multiply($f);
        $y3 = $g->multiply($h);
        $t3 = $e->multiply($h);
        $z3 = $f->multiply($g);

        return [$x3, $y3, $z3, $t3];
    }
}
About
top

About NFC Pay: Our Story and Mission

NFC Pay was founded with a vision to transform the way people handle transactions. Our journey is defined by a commitment to innovation, security, and convenience. We strive to deliver seamless, user-friendly payment solutions that make everyday transactions effortless and secure. Our mission is to empower you to pay with ease and confidence, anytime, anywhere.

  • Simplifying Payments, One Tap at a Time.
  • Reinventing Your Wallet for Modern Convenience.
  • Smart Payments for a Effortless Lifestyle.
  • Experience the Ease of Tap and Pay.
  • Innovative Solutions for Your Daily Transactions.

Frequently Asked Questions About NFC Pay

Here are answers to some common questions about NFC Pay. We aim to provide clear and concise information to help you understand how our platform works and how it can benefit you. If you have any further inquiries, please don’t hesitate to contact our support team.

faq-img

How do I register for NFC Pay?

Download the app and sign up using your email or phone number, then complete the verification process.

Is my payment information secure?

Yes, we use advanced encryption and security protocols to protect your payment details.

Can I add multiple cards to my NFC Pay wallet?

Absolutely, you can link multiple debit or credit cards to your wallet.

How do I transfer money to another user?

Go to the transfer section, select the recipient, enter the amount, and authorize the transfer.

What should I do if I forget my PIN?

Use the “Forgot PIN” feature in the app to reset it following the provided instructions.

How can I activate my merchant account?

Sign up for a merchant account through the app and follow the setup instructions to start accepting payments.

Can I track my payment status?

Yes, you can view and track your payment status in the account dashboard