/home/kueuepay/www/vendor/ezyang/htmlpurifier/library/HTMLPurifier/Strategy/FixNesting.php
<?php

/**
 * Takes a well formed list of tokens and fixes their nesting.
 *
 * HTML elements dictate which elements are allowed to be their children,
 * for example, you can't have a p tag in a span tag.  Other elements have
 * much more rigorous definitions: tables, for instance, require a specific
 * order for their elements.  There are also constraints not expressible by
 * document type definitions, such as the chameleon nature of ins/del
 * tags and global child exclusions.
 *
 * The first major objective of this strategy is to iterate through all
 * the nodes and determine whether or not their children conform to the
 * element's definition.  If they do not, the child definition may
 * optionally supply an amended list of elements that is valid or
 * require that the entire node be deleted (and the previous node
 * rescanned).
 *
 * The second objective is to ensure that explicitly excluded elements of
 * an element do not appear in its children.  Code that accomplishes this
 * task is pervasive through the strategy, though the two are distinct tasks
 * and could, theoretically, be seperated (although it's not recommended).
 *
 * @note Whether or not unrecognized children are silently dropped or
 *       translated into text depends on the child definitions.
 *
 * @todo Enable nodes to be bubbled out of the structure.  This is
 *       easier with our new algorithm.
 */

class HTMLPurifier_Strategy_FixNesting extends HTMLPurifier_Strategy
{

    /**
     * @param HTMLPurifier_Token[] $tokens
     * @param HTMLPurifier_Config $config
     * @param HTMLPurifier_Context $context
     * @return array|HTMLPurifier_Token[]
     */
    public function execute($tokens, $config, $context)
    {

        //####################################################################//
        // Pre-processing

        // O(n) pass to convert to a tree, so that we can efficiently
        // refer to substrings
        $top_node = HTMLPurifier_Arborize::arborize($tokens, $config, $context);

        // get a copy of the HTML definition
        $definition = $config->getHTMLDefinition();

        $excludes_enabled = !$config->get('Core.DisableExcludes');

        // setup the context variable 'IsInline', for chameleon processing
        // is 'false' when we are not inline, 'true' when it must always
        // be inline, and an integer when it is inline for a certain
        // branch of the document tree
        $is_inline = $definition->info_parent_def->descendants_are_inline;
        $context->register('IsInline', $is_inline);

        // setup error collector
        $e =& $context->get('ErrorCollector', true);

        //####################################################################//
        // Loop initialization

        // stack that contains all elements that are excluded
        // it is organized by parent elements, similar to $stack,
        // but it is only populated when an element with exclusions is
        // processed, i.e. there won't be empty exclusions.
        $exclude_stack = array($definition->info_parent_def->excludes);

        // variable that contains the start token while we are processing
        // nodes. This enables error reporting to do its job
        $node = $top_node;
        // dummy token
        list($token, $d) = $node->toTokenPair();
        $context->register('CurrentNode', $node);
        $context->register('CurrentToken', $token);

        //####################################################################//
        // Loop

        // We need to implement a post-order traversal iteratively, to
        // avoid running into stack space limits.  This is pretty tricky
        // to reason about, so we just manually stack-ify the recursive
        // variant:
        //
        //  function f($node) {
        //      foreach ($node->children as $child) {
        //          f($child);
        //      }
        //      validate($node);
        //  }
        //
        // Thus, we will represent a stack frame as array($node,
        // $is_inline, stack of children)
        // e.g. array_reverse($node->children) - already processed
        // children.

        $parent_def = $definition->info_parent_def;
        $stack = array(
            array($top_node,
                  $parent_def->descendants_are_inline,
                  $parent_def->excludes, // exclusions
                  0)
            );

        while (!empty($stack)) {
            list($node, $is_inline, $excludes, $ix) = array_pop($stack);
            // recursive call
            $go = false;
            $def = empty($stack) ? $definition->info_parent_def : $definition->info[$node->name];
            while (isset($node->children[$ix])) {
                $child = $node->children[$ix++];
                if ($child instanceof HTMLPurifier_Node_Element) {
                    $go = true;
                    $stack[] = array($node, $is_inline, $excludes, $ix);
                    $stack[] = array($child,
                        // ToDo: I don't think it matters if it's def or
                        // child_def, but double check this...
                        $is_inline || $def->descendants_are_inline,
                        empty($def->excludes) ? $excludes
                                              : array_merge($excludes, $def->excludes),
                        0);
                    break;
                }
            };
            if ($go) continue;
            list($token, $d) = $node->toTokenPair();
            // base case
            if ($excludes_enabled && isset($excludes[$node->name])) {
                $node->dead = true;
                if ($e) $e->send(E_ERROR, 'Strategy_FixNesting: Node excluded');
            } else {
                // XXX I suppose it would be slightly more efficient to
                // avoid the allocation here and have children
                // strategies handle it
                $children = array();
                foreach ($node->children as $child) {
                    if (!$child->dead) $children[] = $child;
                }
                $result = $def->child->validateChildren($children, $config, $context);
                if ($result === true) {
                    // nop
                    $node->children = $children;
                } elseif ($result === false) {
                    $node->dead = true;
                    if ($e) $e->send(E_ERROR, 'Strategy_FixNesting: Node removed');
                } else {
                    $node->children = $result;
                    if ($e) {
                        // XXX This will miss mutations of internal nodes. Perhaps defer to the child validators
                        if (empty($result) && !empty($children)) {
                            $e->send(E_ERROR, 'Strategy_FixNesting: Node contents removed');
                        } else if ($result != $children) {
                            $e->send(E_WARNING, 'Strategy_FixNesting: Node reorganized');
                        }
                    }
                }
            }
        }

        //####################################################################//
        // Post-processing

        // remove context variables
        $context->destroy('IsInline');
        $context->destroy('CurrentNode');
        $context->destroy('CurrentToken');

        //####################################################################//
        // Return

        return HTMLPurifier_Arborize::flatten($node, $config, $context);
    }
}

// vim: et sw=4 sts=4
About
top

About NFC Pay: Our Story and Mission

NFC Pay was founded with a vision to transform the way people handle transactions. Our journey is defined by a commitment to innovation, security, and convenience. We strive to deliver seamless, user-friendly payment solutions that make everyday transactions effortless and secure. Our mission is to empower you to pay with ease and confidence, anytime, anywhere.

  • Simplifying Payments, One Tap at a Time.
  • Reinventing Your Wallet for Modern Convenience.
  • Smart Payments for a Effortless Lifestyle.
  • Experience the Ease of Tap and Pay.
  • Innovative Solutions for Your Daily Transactions.

Frequently Asked Questions About NFC Pay

Here are answers to some common questions about NFC Pay. We aim to provide clear and concise information to help you understand how our platform works and how it can benefit you. If you have any further inquiries, please don’t hesitate to contact our support team.

faq-img

How do I register for NFC Pay?

Download the app and sign up using your email or phone number, then complete the verification process.

Is my payment information secure?

Yes, we use advanced encryption and security protocols to protect your payment details.

Can I add multiple cards to my NFC Pay wallet?

Absolutely, you can link multiple debit or credit cards to your wallet.

How do I transfer money to another user?

Go to the transfer section, select the recipient, enter the amount, and authorize the transfer.

What should I do if I forget my PIN?

Use the “Forgot PIN” feature in the app to reset it following the provided instructions.

How can I activate my merchant account?

Sign up for a merchant account through the app and follow the setup instructions to start accepting payments.

Can I track my payment status?

Yes, you can view and track your payment status in the account dashboard